首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2021-02-25
54
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),其中α
1
,α
2
,α
3
,α
4
均为4维列向量,且α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
解法1:由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
知矩阵A的秩为3,因此Ax=0的基础解系中只有一个解向量. 由α
1
-2α
2
+α
3
+0α
4
=0得(α
1
,α
2
,α
3
,α
4
)[*],即齐次线性方程组Ax=0的基础解系为[*],再由 [*] 知[*]为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*] 解法2:令[*]得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
-3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0. 由α
2
,α
3
,α
4
线性无关,知 [*] 解此方程组得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/wUARFFFM
0
考研数学二
相关试题推荐
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
下列矩阵中两两相似的是
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
随机试题
关于食管下括约肌的叙述,错误的是
全身黄疸,粪便呈陶土色,可因【】
某百货大楼,地上4层,局部6层,建筑高度36m,建筑面积28700m2,下列做法中,错误的是()。
银行存款清查的方法是()。
如果其他因素不变,下列有关影响期权价值的因素表述正确的有()。
王飞、高云夫妇二人均已年过四十且无子女,便决定收养一个孩子。夫妇二人从社会福利院领回一个3岁男孩,取名王小平,并在当地民政部门办理了收养手续。后来,王小平结婚生子,王飞、高云夫妇年事已高,且无生活来源。此时,李某登门,声称自己是王小平的生母,当年因无力抚养
自居易:在天愿作比翼鸟,在地愿为连理枝
“社会人”假设是组织行为学家提出的一种与管理有关的人性假设。“社会人”假设认为,人们在工作中得到的物质利益对于调动其生产积极性是次要的,人们最重视在工作中与周围的人友好相处,良好的人际关系对于调动人的工作积极性起决定作用。根据上述定义,下列哪项是基于“社会
动:静
在使用信号量机制实现互斥时,互斥信号量的初值一般为():而使用信号量机制实现同步时,同步信号量的初值一般为()。
最新回复
(
0
)