首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
admin
2019-07-22
39
问题
设A=
,B=U
-1
A
*
U.求B+2E的特征值和特征向量.
选项
答案
本题可先求出B+2E(先求A
*
,再求B,再求B+2E),然后求它的特征值与特征向量,这样做计算量大.一个简捷的解法是利用特征值与特征向量的性质来计算. ①求特征值. A=C+E,其中 [*] 则C的特征值为0,0,6,从而A的特征值为1,1,7.|A|=1×1×7=7. 根据定理5.5的②,A
*
的特征值为7,7,1. B~A
*
,从而B和A
*
特征值完全一样,也是7,7,1. B+2E的特征值为9,9,3. ②求特征向量. A
*
与A的对应特征值(指1与7,7与1)的特征向量一样,B+2E与B对应特征值(指7与9,1与3)的特征向量也一样,根据定理5.8的④,A
*
η=λη[*]BU
-1
η=λU
-1
η.于是可以由A的特征向量来得到B+2E的特征向量. 4的属于1的特征向量就是A
*
的属于7的特征向量,用U
-1
左乘后就是B的属于7的特征向量也就是B+2E的属于9的特征向量. A的属于1的特征向量,即(A-E)X=0的非零解.求得(A-E)X=0的基础解系 η
1
=(1,-1,0)
T
,η
2
=(1,0,-1)
T
. 于是A的属于1的特征向量的为 c
2
η
1
+c
2
η
2
,c
2
,c
2
不全为0. 求出ξ
1
=U
-1
η
1
=(-1,1,0)
T
,ξ
2
=U
-1
η
2
=(1,1,-1)
T
,则B+2E的属于9的特征向量为 c
1
ξ
1
+c
2
ξ
2
,c
2
,c
2
不全为0. 同理,A的属于7的特征向量用U
-1
左乘后就是B+2E的属于3的特征向量. 求出A的属于7的特征向量(即(A-7E)X=0的非零解)为 cζ,c不为0,其中η=(1,1,1)
T
, 记ξ=U
-1
η=(0,1,1)
T
,则B+2E的属于9的特征向量为cξ,c≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/sNERFFFM
0
考研数学二
相关试题推荐
计算(χ2+y2)dχdy,其中D={(χ,y)|χ2+y2≤4χ,0≤y≤χ}.
计算sinχ2cosy2dχdy,其中D:χ2+y2≤a2(χ≥0,y≥0).
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题:①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不是(Ⅱ)的解;④(Ⅱ)的解不是(Ⅰ)的解。以上命题中正确的是()
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
设n阶矩阵A满足A2+2A-3E=O.求:(1)(A+2E)-1;(2)(A+4E)-1.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
设α1=(1+A,1,1,1),α2=(2,2+A,2,2),α3=(3,3,3+A,3),α4=(4,4,4,4+A).问A为什么数时α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求出一个最大线性无关组.
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=__________。
计算n阶行列式=_______.
(98年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系,设仪器在重力的作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的
随机试题
喉
微晶高岭石粘土主要由高岭石矿物组成。()
ThemostimportantdayIrememberinallmylifeistheoneon【C1】______rayteacher,AnneMansfieldSullivan,【C2】______tome.I
右心衰竭最有诊断意义的体征是
患者,女性,45岁,留置T管,关于其T管引流的描述正确的是
下列选项说法正确的是()。
根据我国宪法规定,下列选项中哪一项不是我国宪法修正案提议的适格主体?()
跛足策略,是指个体为了回避或降低因不佳表现所带来的负面影响而采取的任何能够将失败原因外化的行动和选择。根据上述定义,下列属于跛足策略的是()。
要使得二次方程式x2-4x+m=0在闭区间[-1,1]上恰好有一个解,则m的取值范围为()
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
最新回复
(
0
)