首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
admin
2019-06-28
28
问题
设α,β为三维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别为α,β的转置。证明:r(A)≤2。
选项
答案
r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β)≤2。
解析
转载请注明原文地址:https://jikaoti.com/ti/T0LRFFFM
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。A是否可对角化?
设矩阵A=。当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵。
已知的一个特征向量。问A能不能相似对角化?并说明理由。
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
η1,η2是n元齐次方程组Ax=0的两个不同的解,若r(A)=n一1,则Ax=0的通解为()
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
随机试题
中学生なのに、あの子は________して大人の話に加わろうとする。
公务员自愿提出申请,并经任免机关批准,依法解除其与机关职务关系的人事行为是()
绿色建筑标准体系正向()的几个维度充实和完善。
如果政府发行公债的规模过大,超过一定限度,将可能出现的情况有()。
混合性筹资动机一般兼具()。
知识产权是指在科学、技术、文化、教育、艺术等领域,人们用智力劳动创造的财富所享受的权利。根据上述定义,下列选项中不属于知识产权的是:
气象服务经济包含两层意义,一是指利用气象服务来防灾、抗灾以避免风险和损失;二是指利用有利的气象条件来创造效益。人们可以利用气象信息作为从事经济活动的决策依据之一,可以根据气象服务提供的信息,安排生产经营活动,减少经济损失,提高经济效益。根据上述定义,下
下列行为中属于无偿的双方民事法律行为的是()。
请根据图(a)所示网络结构回答下列问题。如果在不改变路由表项的前提下,请写出在路由器RF上最多可再连接的路由器数量
Worldwidethereareprobably70to100sharkattacksannuallyresultinginabout5to15deaths.Wesay"probably"becausenota
最新回复
(
0
)