首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-05-22
53
问题
设A=
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故 r(2E-A)=1, 而2E-A=[*],所以x=2,y=-2. 由|λE-A|=[*]=(λ-2)
2
(λ-6)=0得λ
1
=λ
2
=2,λ
3
=6 由(2E-A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*],α
2
=[*] 由(6E=A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*] 令P=[*],则有P
-1
AP=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/i4dRFFFM
0
考研数学二
相关试题推荐
微分方程y’+y=e-xcosx满足条件y(0)=0的解为_______.
试确定A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+v(x3).其中v(x3)是当x→0时比x3高阶的无穷小.
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
(1)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫ab(x)dx=f(η)(b-a);(2)若函数ψ(x)具有二阶导数,且满足ψ(2)>ψ(1),ψ(2)>∫abψ(x)dx,则至少存在一点ξ∈(1,3)
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2.求f(x,y)在椭圆域上的最大值和最小值.
设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设f(x)在(一∞,+∞)上连续,下述命题①若对任意坝f(x)必是奇函数.②若对任意则f(x)必是偶函数.③若f(x)为周期为T的奇函数,则也具有周期T.正确的个数是()
设A是m×n阶矩阵,则下列命题正确的是().
随机试题
夜间行车,当遇对面来车不关闭远光灯时,应及时减速或停车让行。
苯巴比妥急性中毒时为加速其从肾脏排泄,应采取的主要措施是
界桩点、红线点的细部坐标,宜采用()。
在我国第二阶段建筑节能目标中,新建住宅建筑的采暖能耗应在第一阶段节能基础上再降低:
下列选项中,属于商业固体废物的是()。
某框架结构的厂房工程,地下1层,地上1层,层高4m。桩基础采用CFG桩,基础深5.5m,放坡开挖。建筑物平面尺寸45m×17m。地下室防水层为SBS高聚物改性沥青防水卷材,拟采用外贴法施工。施工总承包单位中标后成立了直营项目部,施工过程中采用了新技术。
著名的杜邦恒等式为()。
股份回购属于()
甲公司主要从事小型电子消费品的生产和销售。A注册会计师负责审计甲公司2015年度财务报表。资料一:A注册会计师在审计工作底稿中记录了所了解的甲公司情况及其环境,部分内容摘录如下:(1)2015年初,甲公司董事会决定将每月薪酬发放日由当月最后1日推迟到
内发论的代表人物有()。
最新回复
(
0
)