设x=f(t)cost-f’(t)sint,y=f(t)sint+f’(t)cost,f"(t)存在,证明: (dx)2+(dy)2=[f(t)+f"(t)]2(dt)2.

admin2021-07-02  34

问题 设x=f(t)cost-f’(t)sint,y=f(t)sint+f’(t)cost,f"(t)存在,证明:
(dx)2+(dy)2=[f(t)+f"(t)]2(dt)2.

选项

答案dx=[f’(t)cost-f(t)sint-f"(t)sint-f’(t)cost]dt =-sint[f(t)+f"(t)]dt dy=[f’(t)sint+f(t)cost+f"(t)cost-f’(t)sint]dt=cost[f(t)+f"(t)]dt 故(dx)2+(dy)2=[f(t)+f’’(t)]2(dt)2.

解析
转载请注明原文地址:https://jikaoti.com/ti/VblRFFFM
0

随机试题
最新回复(0)