首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
admin
2013-09-15
83
问题
二次型f(x
1
,x
2
,x
3
)=(x
1
+x
2
)
2
+(x
2
-x
3
)
2
+(x
3
+x
1
)
2
的秩为_________.
选项
答案
2
解析
由题设,f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
1
x
2
+x
2
2
+x
3
2
-2x
2
x
3
+x
1
2
+
3
2
+2x
1
x
3
=2
1
2
+2x
2
2
+2
3
2
+2x
1
x
2
+2x
2
x
3
+2x
1
x
3
,
则该二次型的矩阵为A=
,由初等行变换可将A化为
则r(A)=2,所以二次型的秩为2.
转载请注明原文地址:https://jikaoti.com/ti/5bDRFFFM
0
考研数学二
相关试题推荐
设二次型f(x1,x2)=x12一4x1x2+4x22经正交变换化为二次型g(y1,y2)=ay12+4y1y2+by22,其中a≥b.求a,b值;
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)一f(A)=f’(ξ)(b一a).Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(
已知a是常数,且矩阵可经初等列变换化为矩阵(I)求a;(Ⅱ)求满足AP=B的可逆矩阵P.
[2006年]设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A的特征值和特征向量;
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
证明n阶矩阵相似.
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
设函数f(x)在(0,+∞)内有二阶导数,且满足f(0)=0,f”(x)<0,0<a<b,则当a<x<b,恒有().
随机试题
脐尿瘘是由于__________未闭锁形成的。
(2018年淄博)强调丰富性、关联性、回归性、严密性的课程理论是()
神经嵴的细胞可以迁移到一些器官内,分化形成器官内的神经元或内分泌细胞。
对商品房面积测绘,一般要求精度达到()级。
下列选项中,()行政行为的时效不符合法律规定。
对于A股,我国证券交易所是在()对该证券作除权处理。
A公司为上市公司。2013年1月1日,A公司向其200名管理人员每人授予10万份股份期权,这些人员从2013年1月1日起必须在该公司连续服务3年,服务期满时才能以每股5元购买10万股A公司股票,A公司股票面值为每股1元。每份期权在授予日的公允价值为12元。
Y公司是一般大型煤炭企业。F注册会计师在Y公司2005年度会计报表审计中存货项目的审计。审计过程中,F注册会计师遇到以下问题,请代为做出正确的专业判断。
调查性报道(重庆工商大学,2012年;北京交通大学,2014年)
如下程序的输出结果是______。#include<iostream>usingnamespacestd;intfunl(intx){return++x;}intfun2(int&x){return++x;
最新回复
(
0
)