首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
admin
2021-01-25
83
问题
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x
0
∈I,由曲线y=f(x)在点(x
0
,f(x
0
))处的切线与直线x=x
0
及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
选项
答案
先写出切线方程:y=f’(x
0
)(x—x
0
)+f(x
0
),令y=0,则可以得到 [*] 所以(x
0
,0)到切线与x轴交点的距离为|x一x
0
|=[*](x
0
,0)与切点距离为f(x
0
),可以得到切线与x=x
0
,x轴所围成的直角三角形面积为[*]整理得微分方程f
2
(x
0
)=8f’(x
0
),解该微分方程得 [*] 又因为f(0)=2,可以计算出[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/ZwaRFFFM
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
证明:∫01dx∫01(xy)xydy=∫01xxdx.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的联合分布;
[2006年]设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求:F(-1/2,4).
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αTi表示列向量αi的转置,i=1,2,…,n.
设矩阵A、B满足关系式AB=A+2B,其中,求矩阵B.
设矩阵A=,E为三阶单位矩阵。(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B。
(89年)假设函数f(χ)在[a,b]上连续.在(a,b)内可导,且f′(χ)≤0.记F(χ)=证明在(a,b)内F′(χ)≤0.
微分方程yˊˊ-2yˊ=x2+e2x+1由待定系数法确定的特解形式(不必求出系数)是_________.
随机试题
男性,34岁,因失血性休克正在输液。现测得其CVP4.8cmH2O(0.47kPa),BP90/55mmHg(127/7.3kPa)。应采取的措施是
关于葡萄胎,下述哪项是错误的
下列引起慢性腹泻的是
年轻女性,多种药物过敏,1周前上呼吸道感染曾用红霉素治疗,近日外出时突然喘憋,端坐呼吸,大汗,两肺满布哮鸣音,可能诊断
A.初为疱疹,很快成为脓疱,夏秋季节发B.皮肤黏膜分批出现丘疹、疮疹、结痂C.发热3~4天后,热退疹出,呈玫瑰红色斑疹D.风团样丘疹,中心有针尖大小水疱伴瘙痒E.疮疹分布于四肢远端、手足及口腔黏膜,不结痂
工程质量监督机构的基本职责有( )。
目前,我国政府会计可采用的会计基础有()。
飞机起飞与降落时,应(),最为有利于安全保障。
“没有规矩不能成方圆”,维护公共秩序对经济社会健康发展具有重要意义,具体表现在
Someinvestigationsshowthatthecauseoftheaccidentmaybetheplaneengine’sfailuretooperate.
最新回复
(
0
)