设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明: 若A有n个不同的特征值,α是A的特征向量,则α也是A的特征向量.

admin2017-06-14  27

问题 设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明:
若A有n个不同的特征值,α是A的特征向量,则α也是A的特征向量.

选项

答案由上一题知,α,Bα是A对应于同-特征值的特征向量,又由于A有n个不同的特征值,故对应于同-特征值的特征向量线性相关,所以α,Bα线性相关,又α,Bα均为非零向量,所以存在常数k,使Bα=kα,所以α是B的对应于特征值k的特征向量.

解析
转载请注明原文地址:https://jikaoti.com/ti/z0wRFFFM
0

随机试题
最新回复(0)