首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1, A(α1+α2)线性无关的充分必要条件是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1, A(α1+α2)线性无关的充分必要条件是
admin
2013-04-04
48
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
则α
1
,
A(α
1
+α
2
)线性无关的充分必要条件是
选项
A、λ
1
≠0.
B、λ
2
≠0.
C、λ
1
=0.
D、λ
2
=0.
答案
B
解析
按特征值和特征向量的定义,有A(α
1
+α
2
)=Aα
1
+Aα
2
=λ
1
α
1
+λ
2
α
2
.
α
1
,A(α
1
+α
2
)线性无关 k
1
α
1
+k
2
A(α
1
+α
2
)=0,k
1
,k
2
恒为0.
(k
1
+λ
1
k
2
)α
1
+λ
2
k
2
α
2
=0,k
1
k
2
为0.
不同特征值的特征向量线性无关,所以α
1
,α
2
线性无关.
转载请注明原文地址:https://jikaoti.com/ti/wScRFFFM
0
考研数学一
相关试题推荐
(04年)设函数f(x)连续。且f’(0)>0,则存在δ>0,使得
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=()
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为_______.
(2011年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示,(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2
(1999年)设函数f(χ)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f〞(ξ)=3.
A、处处可导B、恰有一个不可导点C、恰有两个不可导点D、至少有三个不可导点C一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式的不变性.利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数.幂指数函数f(x)g(x)求导法,隐
(2003年试题,一)设α为三维列向量,αT是α的转置,若则αTα=__________.
(16年)已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______.
设函数y=y(x)由参数方程确定,求曲线y=y(x)为凹时,x的取值范围。
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
随机试题
土地使用权出让合同的内容包括()。
IPSeeVPN使用了对称和非对称加密技术,下列属于非对称加密技术的是()。
在word2000中,自绘图形和艺术字默认的插入方式是嵌入式的。()
A.尽早手术B.学龄前手术C.6~12岁手术D.成人期手术E.药物治疗
酒后驾驶,运输建筑材料的行为属于建设工程安全隐患中_________的不安全因素。()
借款人采取自主支付的,银行将贷款资金直接发放至借款人账户后,借款人可自主支配使用。()
进货管理子系统的目标是()。
马克思主义的精髓是()
A、Fourteendollars.B、It’snexttothestation.C、Sorry,Ihavenomoney.D、Sorry,Idon’tknowtheway.A“Howmuchis/are…?”意为“
Sowe’vealreadytalkedabitaboutthe【B1】______ofextremesportslikerock-climbing.Aspsychologists,weneedtoaskourselve
最新回复
(
0
)