首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α4的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α4的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
admin
2019-05-11
29
问题
设向量组(Ⅰ):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
4
的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α
1
,α
2
,α
3
+α
4
的秩等于3.
选项
答案
由向量组(Ⅱ)的秩为3得α
1
,α
2
,α
4
线性无关,从而α
1
,α
2
线性无关, 由向量组(Ⅰ)的秩为2得α
1
,α
2
,α
3
线性相关, 从而α
3
可由α
1
,α
2
线性表示,令α
3
=k
1
α
1
+k
2
α
2
. (α
1
,α
2
,α
3
+α
4
)=(α
1
,α
2
,k
1
α
1
+k
2
α
2
+α
4
) =(α
1
,α
2
,α
4
)[*] 由[*]=1≠0得矩阵[*]可逆, 故r(α
1
,α
2
,α
3
+α
4
)=r(α
1
,α
2
,α
4
)=3.
解析
转载请注明原文地址:https://jikaoti.com/ti/ptLRFFFM
0
考研数学二
相关试题推荐
设(Ⅰ)的一个基础解系为写出(Ⅱ)的通解并说明理由.
χ=φ(y)是y=f(χ)的反函数,f(χ)可导,且f′(χ)=,f(0)=3,求φ〞(3).
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设f(χ)在[a,b]上二阶可导且f〞(χ)>0,证明:f(χ)在(a,b)内为凹函数.
设f(χ)∈C[1,+∞),广义积分∫0+∞f(χ)dχ收敛,且满足f(χ)=f(χ)dχ,则f(χ)=_______.
把二重积(χ,y)dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
微分方程y’’-y=ex+1的一个特解应具有形式(式中a,b为常数)().
微分方程y"-4y’=x2+cos2x的特解形式为().
考察一元函数f(x)的下列四条性质:①f(x)在区间[a,b]上连续②f(x)在区间[a,b]上可积③f(x)在区间[a,b]上存在原函数④f(x)在区间[a,b]上可导若用P→Q表示可由性质P推出性质Q,
随机试题
在Excel中,输入分数5/7的方法是________________。
关格脾肾亏虚,湿热内蕴型的治法是关格脾肾阳虚,寒浊上犯的治法是
“某药品在冷处贮存”所指环境的温度是
流行性腮腺炎可出现腮腺管开口处粘膜红肿,其部位在
脊休克的发生是由于切断脊髓时,对脊髓造成强烈损伤所引起的。()
变电所的等级按()确定。
下列关于人大代表权利和义务的表述,正确的是()。
一位长期从事醉酒及酒精中毒研究的医生发现,一般情况下,醉酒者的暴力倾向远远高于未饮酒者或适度饮酒者。据此,该医生断定,具有暴力倾向的人容易喝醉酒。以下哪项最严重地削弱了这位医生的断定?
A、Bobisfeelingasbadasbefore.B、Bobisstillill.C、Bobisbetterthanthewoman.B此段对话中女方问的是:Bob,你感到好点儿了吗?男方说的是:好点儿了,但我仍有点
Directions:TranslatetheunderlinedsentencesinthefollowingpassageintoChinese.Instead&tryingtoreducethedisconten
最新回复
(
0
)