首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(0)=0,g’(a)=0是F(x)在x=a处可导的( )
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(0)=0,g’(a)=0是F(x)在x=a处可导的( )
admin
2016-01-15
53
问题
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(0)=0,g’(a)=0是F(x)在x=a处可导的( )
选项
A、充分必要条件.
B、充分非必要条件.
C、必要非充分条件.
D、非充分非必要条件.
答案
A
解析
因φ(x)在x=a不可导,所以不能对F(x)用乘积的求导法则,需用定义求,F’(a).题设φ(x)以x=a为跳跃间断点,则存在
,A
+
≠A
—
.
当g(a)=0时,
下面证明若F’(a)存在,则g(a)=0.
反证法,若g(a)≠0,φ(x)=
,由商的求导法则,φ(x)在x=a可导,这与题设矛盾,则g(a)=0,g’(a)=0是F(x)在x=a处可导的充要条件.故选A.
转载请注明原文地址:https://jikaoti.com/ti/nIPRFFFM
0
考研数学一
相关试题推荐
解下列微分方程:(Ⅰ)y〞-7y′+12y=χ满足初始条件的特解;(Ⅱ)y〞+a2y=8cosbχ的通解,其中a>0,b>0为常数;(Ⅲ)y″′+y〞+y′+y=0的通解.
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
求
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知二次型f(x1,x2,x3)=(1-a)x21+(1-a)x22+2x23+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
验证由方程F(x,y)=0所确定的隐函数y=f(x)的二阶导数
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数;(2)求方程组AX=0的通解.
设二元函数f(x,y)=|x-y|ψ(x,y),其中ψ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是ψ(0,0)=0.
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图3.32).
随机试题
下列有关已人账和误填作废的原始凭证保管的说法错误的是
肺炎患者膳食禁忌
养生的基本原则不包括
丙找甲借自行车,甲的自行车与乙的很相像,均放于楼下车棚。丙错认乙车为甲车,遂把乙车骑走。甲告知丙骑错车,丙未理睬。某日,丙骑车购物,将车放在商店楼下,因墙体倒塌将车砸坏。下列哪些表述是正确的?(卷三2012年真题试卷第58题)
白某系单身母亲,对其子小亮寄予厚望。平时若小亮考试成绩达不到“双百”白某就用皮鞭打他,不给饭吃,罚站,怒骂。期末考试小亮成绩又不理想,白某又对其进行打骂,而且在打骂过程中越来越伤心,一直用鞭子将自己儿子活活打死。对白某的行为应如何认定?()
环泵式比例混合器安装标高的允许偏差为()
上市公司及交易对方与证券服务机构签订聘用合同后,可以随时更换证券服务机构。()
抗辩权的形式包括()
Insomecountrieswhereracialprejudiceisacute,violencehassocometobetakenforgrantedasameansofsolvingdifference
A、Heissatisfiedexceptthebadfood.B、Heisn’tsatisfiedwiththerestaurant.C、Hethinksthewaitersarehelpful.D、Hefeels
最新回复
(
0
)