首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1,2是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是( ).
已知ξ1,2是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是( ).
admin
2017-06-14
32
问题
已知ξ
1
,
2
是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是( ).
选项
A、ξ
1
B、ξ
2
C、ξ
1
-ξ
2
D、ξ
1
+ξ
2
答案
C
解析
因ξ
1
≠ξ
2
,故ξ
1
-ξ
2
≠0,且仍有关系A(ξ
1
-ξ
2
)=λξ
1
-λξ
2
=λ(ξ
1
-ξ
2
),故ξ
1
-ξ
2
是特征向量.
而A中ξ
1
,B中ξ
2
,D中ξ
1
+ξ
2
均有可能是零向量而不成为A的特征向量.故选C.
转载请注明原文地址:https://jikaoti.com/ti/W7wRFFFM
0
考研数学一
相关试题推荐
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
设R3中的向量ξ在基a1=(1,-2,1)T,a2=(0,1,1)T,a3=(3,2,1)T下的坐标为(x1,x2,x3)T,它在基β1,β2,β3下的坐标为(y1,y2,y3)T,且y1=x1-x2-x3,y2=-x1+x2,y3=x1+2x3,则由基β
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
判断下列函数的单调性:
随机试题
对于危重患者及病情突变者,病程记录的时间应是()
典型肺炎球菌肺炎的临床特征是
A.克雷伯菌肺炎B.产超广谱p内酰胺酶大肠埃希菌所致肺炎C.军团菌肺炎D.金黄色葡萄球菌肺炎E.铜绿假单胞菌肺炎感染首选依米配能+西司他丁的是
根据行为改变阶段的模式,对于问题尚无了解的患者应采取的措施是()
某重力式码头主体工程施工分3个流水段进行,段间、段内施工工艺互无干扰。抛石基床(包括挖泥、抛石、整平)、沉箱安放(包括预制、出运、安装、箱内填料)、上部结构(包括沉箱封顶混凝土、胸墙及面层混凝土浇筑)分项工程各只有一个专业施工队施工。各分项工程所需工时如下
有人说:“在单位,与人相处时要互相信任,互相帮助。”作为一名新同事,今后的工作中你会怎样与同事相处,并取得同事的信任?
根据下表所示的实验设计方案。采用这种设计可控制的主要额外变量是
孔子重视启发式教学,主张“不愤不启,不悱不发”。朱熹对“愤”的解释是()
上层建筑的社会意识形式包括( )
[*]
最新回复
(
0
)