首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX= 0必有( )
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX= 0必有( )
admin
2013-08-30
34
问题
设A为n阶实矩阵,A
T
为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)A
T
AX= 0必有( )
选项
A、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
B、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
B
解析
若x
i
是AX=0的解,即Ax
i
=0,显然A
T
Ax
i
=0;
若x
i
是A
T
AX=0的解,即A
T
Ax
i
=0,则x
i
T
A
T
Ax
i
=0,即(Axi
i
)
T
(Ax
i
)=0.
若Ax
i
≠0,不妨设Ax
i
=(b
1
,b
2
,…,b
n
)
T
,b≠0,则(Ax
i
)
T
(Ax
i
)=
,
与(Ax
i
)
T
(Ax
i
)=0矛盾,因而Ax
i
=0,即(Ⅰ)、(Ⅱ)同解.故应选(B)。
转载请注明原文地址:https://jikaoti.com/ti/dncRFFFM
0
考研数学一
相关试题推荐
设.当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
设z=z(x,y)是由方程f(y-x,yz)=0所确定的隐函数,其中函数f对各个变量具有连续的二阶偏导数,求
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明向量组α,Aα,…,Am-1α线性无关.
设xOy平面上有正方形D={(x,y)|-1≤x≤1,-1≤y≤1}及直线l:x+y=t,若l(t)表示正方形D位于直线l左下方部分的面积,试求
求下列不定积分:
设A为4阶矩阵,r(A)=2,α1,α2为AX=0的两个线性无关解,β1,β2为AX=b的特解,下列四组中可作为AX=b的通解的是().
设函数y=y(x)由参数方程确定,则=________.
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
随机试题
A、Correcttheirmistakeassoonaspossible.B、Givethetwopetsaphysicalcheckup.C、Hireacharterjettobringthepetsback
我国和其他社会主义国家制定教育目的的指导思想和理论是()。
如果A国在各种商品的生产上都处于优势,那么它与其他国家之间()
患者,睡时汗出,醒时汗止,心悸少寐,神疲气短,面包无华,舌淡脉虚。宜选用
单身期主要需要的理财规划不包括( )。
下列事项中,应计入其他综合收益的有()。
早在公元前328年,古希腊哲学家()就指出:人在本质上是社会性的动物。
北洋政府统治时期,专门受理行政诉讼案件的中央司法机关是()
"Twentyyearsago,Blackpoolturneditsbackontheseaandtriedtomakeitselfintoanentertainmentcentre,"saysRobinWood,
Readthefollowingad.Inmostofthelines(41-52),thereisoneextraword.Iteitherisgrammaticallyincorrectordoesno
最新回复
(
0
)