首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,,证明:存在,使得f’(ξ)+f’(η)==ξ2+η2.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,,证明:存在,使得f’(ξ)+f’(η)==ξ2+η2.
admin
2014-01-26
30
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,
,证明:存在
,使得f’(ξ)+f’(η)==ξ
2
+η
2
.
选项
答案
令[*],由题知F(0)=F(1)=0, F(x)在[*]上用拉格朗日中值定理, [*] ① F(x)在[*]上利用拉格朗日中值定理, [*] ② 两式相加得 f’(ξ)|f’(η)=ξ
2
+η
2
.
解析
[分析] 这是一个双介值的证明题,构造辅助函数,用两次拉格朗日中值定理.
[评注] 一般来说,对双介值问题,若两个介值有关联同时用两次中值定理,若两个介值无关联时用一次中值定理后,再用一次中值定理.
转载请注明原文地址:https://jikaoti.com/ti/TODRFFFM
0
考研数学二
相关试题推荐
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
(06年)设函数f(χ)在χ=0处连续,且=1,则
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
[2007年]设线性方程组(I)与方程(Ⅱ):x1+2x2+x3=a-1.有公共解.求a的值与所有公共解.
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
(96年)设f(χ)在区间[0,1]上可微,且满足条件f(1)=χf(χ)dχ,试证:存在ξ∈(0,1),使f(ξ)+ξf′(ξ)=0.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
随机试题
下列有关胰的叙述,错误的是
药材软化不好,或刀不锋利时切片易出现
外源化学物质在体内的主要贮存库不包括
患者体重50kg,拟静脉输入10%葡萄糖液,每分钟滴速以不超过哪项为宜
在登记会计账簿时,如果发生隔页、跳行,应当()。
“五一”假期期间,某学校计划组织385名师生租车旅游,现知道租车公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.若学校同时租用这两种客车共8辆(可以坐不满),而且要比单独只租用一种车辆节省租金.请你帮助该学
无所事事:游手好闲:废寝忘食
甲抱着侄女乙(刚满4个月,不会走路)经过工地,为了洗手方便,甲将乙放置在起降机上。起降机上有“远离,危险!”的警示牌。此时,起降机操作人员丙(在10米远的操作平台上)在没有依照有关规定确保升降机的安全使用的情况下,启动起降机,致使乙坠地身亡。下面对甲、丙的
Whomightthemanbe?
Astheautomobileindustryshedsjobs,itcomesasgoodnewsthatoverthelastdecadeorsotheInternethascreated1.2millio
最新回复
(
0
)