设二元函数f(x,y)=|x—y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.

admin2019-01-23  39

问题 设二元函数f(x,y)=|x—y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.

选项

答案(必要性)设f(x,y)在点(0,0)处可微,则fx’(0,0),fy’(0,0)存在. [*] (充分性)若φ(0,0)=0,则fx’(0,0)=0,fy’(0,0)=0. [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/No1RFFFM
0

最新回复(0)