首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值,并证明A不可以对角化.
设A=,求A的特征值,并证明A不可以对角化.
admin
2017-08-31
40
问题
设A=
,求A的特征值,并证明A不可以对角化.
选项
答案
由|λE一A|=[*]=(λ一2)
2
=0得λ=2(三重),因为r(2E一A)=1,所以λ=2只有两个线性无关的特征向量,故A不可以对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/4yVRFFFM
0
考研数学一
相关试题推荐
设且B=P-1AP.求矩阵A的特征值与特征向量;
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β不能由α1,α2,α3线性表出?
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件α
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
随机试题
单纯性甲状腺肿的病因包括
利血平咖啡因
伤寒的皮疹属于
患者,女性,40岁,右上颈部肿物发现5年。增长不明显。近3天发生上呼吸道感染,肿物突然增大,伴疼痛。检查见肿物位于胸锁乳突肌上1/3前缘,质软。有波动感,无搏动,体位试验阴性。最可能的诊断是
下列关于土方回填压实对土料要求与含水控制的说法中,正确的有()。
[2014年第90题]对逻辑表达式(A+B).(A+C)的化简结果是()。
从初唐起,中印交通开启了一个新的阶段。在初唐以前,陆路是最重要的道路,由海路往来者比较少。但是,到了初唐,由于航海技术的突飞猛进,走海路的僧人一下子多了起来。此外,陆路还有一条道路,就是经过西藏、尼泊尔到印度去。这一条路过去走的人非常少。到了初唐义净时代,
甲、乙、丙、丁四支球队开展篮球比赛,每两个队之间都要比赛1场,已知甲队已比赛了3场,乙队已比赛了2场,丙队已比赛了l场,丁队已比赛了几场?()
对象是现实世界中一个实际存在的事物,它可以是有形的,也可以是无形的,下面所列举的不是对象的是( )。
Accordingtothepassage,people______.Peopleenjoylisteningtomusic,______.
最新回复
(
0
)