首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr, … βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr, … βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2016-04-11
34
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
,
…
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
s
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
…β
r
]=[α
1
,α
2
,…,α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
…β
s
]及P=[α
1
,α
2
,…,α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若x满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r一r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
…β
r
线性无关→r[β
1
β
2
…β
r
]=r[*]|A|≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/LAPRFFFM
0
考研数学一
相关试题推荐
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。设x=(x1,x2,x3)T,求方程xTAx=0的全部解。
设f(x)在[0,a](a>0)上有二阶连续导数,且f(x)≥0,f(0)=0,f"(x)>0,D={(x,y)|0≤x≤a,0≤y≤f(x)},证明:
设f(x)在[0,1]上可导,f’(x)>0,0≤t≤1,记S1(t)为y=f(x),y=f(t),x=0所围面积,S2(t)为y=f(x),y=f(t),x=1所围面积,证明:存在唯一的ξ∈(0,1),使得S1(ξ)=kS2(ξ),k>0。
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
若函数y=f(x)有f’(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
已知f(x)在(-∞,+∞)内连续,且对任意x有f(x)=f(x2),f(1)=a,试求f(x).
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a=__________.
设f(x)=|x|+sinx(-π≤x≤π)的傅里叶展开为(ancosnx+bnsinnx),则其中的系数a3为().
已知y”+(x+3e2y)(y’)3=0(y’≠0),当把y视为自变量,而把x视为因变量时:在新形式下求方程的通解.
某工厂产积木玩具,每生产一套积木玩具的可变成本为15元,每天的固定成本为2000元.如果每套积木玩具的出厂价为20元,为了不亏本,问该厂每天至少生产多少套这种积木玩具?
随机试题
血浆胶体渗透压主要由下列哪项形成
压力蒸汽灭菌的消毒物品的包装要求,不正确的是
编制物资供应计划的实际工作中首先应考虑()的平衡。
浅滩疏浚弃土处理应充分利用于()。
根据《建设工程工程量清单计价规范》GB50500—2013,关于全额政府投资项目招标控制价的说法,正确的有()。
期货交易所的下列行为中不需要中国证监会批准的是( )。
下列关于存款利息计算的说法,正确的是()。
[2015年]设函数y=y(x)是微分方程y"+y’-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=_______.
E-R图是数据库设计的工具之一,它一般适用于建立数据库的()。
1ThemenandwomenofAnglo-SaxonEnglandnormallyboreonenameonly.Distinguishingepithetswererarelyadded.Thesemigh
最新回复
(
0
)