首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶非零矩阵,且A中各行元素对应成比例,又α1,α2,…,αt是Aχ=0的基础解系,β不是Aχ=0的解.证明任一n维向量均可由α1,α2,…,αt,β线性表出.
已知A是n阶非零矩阵,且A中各行元素对应成比例,又α1,α2,…,αt是Aχ=0的基础解系,β不是Aχ=0的解.证明任一n维向量均可由α1,α2,…,αt,β线性表出.
admin
2019-07-19
18
问题
已知A是n阶非零矩阵,且A中各行元素对应成比例,又α
1
,α
2
,…,α
t
是Aχ=0的基础解系,β不是Aχ=0的解.证明任一n维向量均可由α
1
,α
2
,…,α
t
,β线性表出.
选项
答案
因为矩阵A中各行元素对应成比例,故r(A)=1,因此t=n-1. 若k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+lβ=0, ① 用A左乘上式,并把Aα
i
=0(i=1,2,…,n-1)代入,得 lAβ=0. 由于Aβ≠0,故l=0.于是①式为 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0. ② 因为α
1
,α
2
,…,α
n-1
是基础解系,知α
1
,α
2
,…,α
n-1
线性无关. 从而由②知k
1
=0,k
2
=0,…,k
n-1
=0. 因此α
1
,α
2
,…,α
n-1
,β线性无关. 对任一n维向量γ由于任意n+1个n维向量α
1
,α
2
,…,α
n-1
,β,γ必线性相关,那么γ必可由α
1
,…,α
n-1
,β线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/KhQRFFFM
0
考研数学一
相关试题推荐
设u=f(x,y,xyz),函数z=z(x,y)由exyz=h(xy+z一t)出确定,其中f连续可偏导,h连续,求.
设证明:级数收敛,并求其和.
已知随机变量X1与X2的概率分布,而且P{X1X2=0}-1.问X1与X2是否独立?为什么?
对三台仪器进行检验,各台仪器产生故障的概率分别为p1,p2,p3,各台仪器是否产生故障相互独立,求产生故障仪器的台数X的数学期望和方差.
f(x)=δ为大于零的常数,又g’—(x0),h’+(x0)均存在,则g(x0)=h(x0),g’—(x0)=h’+(x0)是f(x)在x0可导的()
质点P沿以AB为直径的半圆从点A(1,2)到点B(3,4)运动,受力F的作用,力的大小等于|OP|,方向垂直于线段OP且与y轴的夹角为锐角,求力F所做的功.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
确定常数a和b,使得函数f(x)=处处可导.
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本.(Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度;(Ⅱ)求P{X≥2}的最大似然估计.
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
随机试题
关于结节性硬化的描述错误的是
质量调整生存年数是指用什么而得到的新指标
患者,女,40岁,月经漏下不止,经血色暗伴有血块已有2个月,小腹疼痛拒按,时见乏力倦怠,舌边尖有瘀点,脉涩。此病辨证为
女性,40岁。患有子宫肌瘤,引起月经量增多。与经期延长最密切的因素是()。
下列有关存货会计处理的表述中,正确的有()。
在线索化二叉树中,t所指结点没有左子树的充要条件是()。
Whatarethespeakersdoing?
Itwasanearlymorninginsummer.Inthestreets,sleepyeyedpeopleweremovingquickly,headingtowardstheirjobs.Thiswas
Theysaidtheywould____________(草拟一份合同)withinthisweek.
WriteacompositionentitledOnDisasters.Youshouldwriteatleast120wordsaccordingtotheoutlinegivenbelowinChinese:
最新回复
(
0
)