首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)=δ为大于零的常数,又g’—(x0),h’+(x0)均存在,则g(x0)=h(x0),g’—(x0)=h’+(x0)是f(x)在x0可导的( )
f(x)=δ为大于零的常数,又g’—(x0),h’+(x0)均存在,则g(x0)=h(x0),g’—(x0)=h’+(x0)是f(x)在x0可导的( )
admin
2018-11-22
21
问题
f(x)=
δ为大于零的常数,又g’
—
(x
0
),h’
+
(x
0
)均存在,则g(x
0
)=h(x
0
),g’
—
(x
0
)=h’
+
(x
0
)是f(x)在x
0
可导的( )
选项
A、充分非必要条件.
B、必要非充分条件.
C、充分必要条件.
D、非充分非必要条件.
答案
C
解析
充分性:设g(x
0
)=h(x
0
),g’
—
(x
0
)=h’
+
(x
0
),则f(x)可改写为
所以f’
—
(x
0
)=g’(x
0
),f’
+
(x
0
)=h’
+
(x
0
),即f’
—
(x
0
)=f’
+
(x
0
).
必要性:由可导的充要条件得f(x)在x
0
处可导.设f(x)在x
0
处可导,则f(x)在x
0
处连续,所
以
=f(x
0
).又g’
—
(x
0
)与h’
+
(x
0
)存在,则g(x),h(x)在x
0
分别左右连续,所
以
由此有
f’
+
(x
0
)=h’
+
(x
0
),f’
—
(x
0
)=g’
—
(x
0
),
所以h’
+
(x
0
)=g’
—
(x
0
),故选C.
转载请注明原文地址:https://jikaoti.com/ti/yT1RFFFM
0
考研数学一
相关试题推荐
设A=,A*是A的伴随矩阵,则A*x=0的通解是________。
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)=(Ⅰ)证明F’(x)单调增加;(Ⅱ)当x取何值时,F(x)取最小值;(Ⅲ)当F(x)的最小值为f(a)-a2-1时,求函数f(x)。
设函数f(x)在区间[0,1]上连续,且
计算I=-1|dσ,其中区域D由曲线y=和x轴围成。
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。如果A3β=Aβ,求秩r(A-E)及行列式|A+2E|。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为()
设A、B、C三个事件两两独立,则A、B、C相互独立的充分必要条件是()
(1l年)求方程karctanx—x=0不同实根的个数,其中k为参数.
试证明:方程有且只有一个实根.
随机试题
异长自身调节是指心脏的每搏输出量取决于()
碎石土的压实应采用()。
房地产开发企业售卖新建商品房屋后应当到房地产行政主管部门办理()。
从()开始,我国出现用木俑和陶俑替代活人殉葬的风俗。
几个小朋友开心地表演故事“金色的房子”,这一游戏属于()。
广州大学教育科学研究所研究大学生德育问题的骆风教授认为,在社会文化环境日趋开放的今天,大学生作为接受知识最前沿的群体,出现婚前性行为韵事情,也是能够理解的,再加上他们已经是成年人,在男女性关系方面有必然的需求,社会需要对他们不断引导教育。下列表述最
英国研究各类精神紧张症的专家发现,越来越多的人在使用Internet之后都会出现不同程度的不适反应。根据一项对10000个经常上网的人的抽样调查,承认上网后感到烦躁和恼火的人数达到了1/3;而20岁以下的网迷则有44%承认上网后感到烦躁和紧张。心理学家认为
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T](K>0),欲在T时将数量为A的该商品售完,试求:t时的商品剩余量,并确定k的值。
Theplaceseemedasunlikelyasthecomingtogetherofthetwoprincipals.InJune1995,PrincessDianawenttovisitMotherTer
Inlessthan30year’stimetheStarTrekholodeckwillbeareality.Directlinksbetweenthebrain’snervoussystemandacomp
最新回复
(
0
)