首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本. (Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度; (Ⅱ)求P{X≥2}的最大似然估计.
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本. (Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度; (Ⅱ)求P{X≥2}的最大似然估计.
admin
2018-11-22
24
问题
设总体X~N(μ,σ
2
),μ,σ
2
未知,而X
1
,X
2
,…,X
n
是来自总体X的样本.
(Ⅰ)求使得
f(x;μ,σ
2
)dx=0.05的点a的最大似然估计,其中f(x;μ,σ
2
)是X的概率密度;
(Ⅱ)求P{X≥2}的最大似然估计.
选项
答案
已知μ,σ的最大似然估计值分别为 [*] (Ⅰ)[*]f(x;μ,σ
2
)dx=F(+∞;μ,σ
2
)一F(a;μ,σ
2
)=1一Ф[*], 其中,F为X的分布函数. 要使 [*] 必须有[*]=1.645,即a=μ+1.645σ. 由最大似然估计的不变性,得a的最大似然估计为[*] (Ⅱ)P{X≥2}=1一Ф[*],由最大似然估计的不变性,知P{X≥2}的最大似然估计为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/Tk1RFFFM
0
考研数学一
相关试题推荐
有甲、乙、丙三个盒子,第一个盒子里有4个红球1个白球,第二个盒子里有3个红球2个白球,第三个盒子里有2个红球3个白球,先任取一个盒子,再从中先后取出3个球,以X表示红球数.(Ⅰ)求X的分布律;(Ⅱ)求所取到的红球不少于2个的概率.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进人大气层开始燃烧的前3s内,减少了体积的,问
设二维随机变量(x,y)的联合密度函数为f(x,y)=则k值为().
设un(x)满足u’n(x)=un(x)+xn—1ex(n=1,2,…),且un(1)=un(x)的和函数.
曲线y=x(x-1)(2-x)与x轴所围成的平面图形的面积可表示为()
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(X)]没有间断点。
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y′+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
(92年)设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为
随机试题
(2021年泰安)以下不属于新课改提出的三维课程目标的是()
阅读下列短文,回答问题自言自语(其六)史铁生自然之神以其无限的奥秘生
法人必须有其名称,法人的名称具有()。
(2007年)如图2.6-2所示,由冷、热两个表面构成的夹层中是流体且无内热源。如果端面绝热,则达到稳态时,传热量最少的放置方式是()。
香港会展中心在建设开始时编制的建设项目管理规划,其主要内容不包括()。
当桥梁跨径在8~16m时,简支板桥一般采用()。
票据诈骗罪客观方面的表现包括()。
某企业的总资产净利率为20%,若产权比率为1,则权益净利率为()。(2009年原制度)
远期外汇交易的最大优点在于()。
Thefollowingarticleisaboutthe"parenttrigger"lawsintheUS.Thebasicconceptofthepolicyisthatparentshavetheabi
最新回复
(
0
)