首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. 求|A*+2E|.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. 求|A*+2E|.
admin
2018-05-21
28
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=-ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
-ξ
2
-2ξ
3
,Aξ
3
=2ξ
1
-2ξ
2
-ξ
3
.
求|A
*
+2E|.
选项
答案
因为|A|=-5,所以A
*
的特征值为1,-5,-5,故A
2
+2E的特征值为3,-3,-3. 从而|A
*
+2E|=27.
解析
转载请注明原文地址:https://jikaoti.com/ti/KMVRFFFM
0
考研数学一
相关试题推荐
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
若α,β,γ是单位向量且满足α+β+γ=0,则以α,β为边的平行四边形的面积S=_________.
设x1=a>0,y1=b<0,(a≤b),且xn+1=,n=1,2,…,证明:
设函数f(x)连续且恒大于零,其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F(t)在区间(0,+∞)内的单调性.(2)证明当t>0时,F(t)>G(t).
设函数f(x)在R上具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,起点为(a,b),终点为(c,d).记(1)证明曲线积分I与路径L无关.(2)当ab=cd时,求I的值.
设y1=ex一e一xsin2x,y2=e一x+e一Xcos2x是某二阶常系数非齐次线性方程的两个解,则该方程是________.
设α,β均为n维非零列向量,且αtβ≠o.设矩阵A=αβT一E,且满足方程A2一3A=4E,则αT2=________.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
随机试题
显微镜检查,可确认为痰液标本的细胞是
寻找接触性皮炎过敏原常用的试验是
呕吐呈喷射状者是因为()
随着生活节奏的加快,过度的劳累常会使生理功能衰退或脏腑功能紊乱,导致各种疾病,从而出现各种虚证,而治疗虚证的中成药应根据机体虚损的具体情况,有针对性的选择。败毒散中用少量人参的意义是
传热的基本方式是()。
企业支取现金用于工资、奖金发放,只能通过规定的银行账户办理,该银行账户是()。
从课程内容所固有的属性来区分,课程可分为()。
阅读下列句子,完成题目。①长风破浪会有时,直挂云帆济沧海。②过春风十里,尽荠麦青青。③日出江花红胜火,春来江水绿如蓝。④接天莲叶无穷碧,映日荷花别样红。⑤自经丧乱少睡眠,长夜沾湿何由彻。⑥僵卧孤村不自哀,尚思为国戍轮台。
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
在具有n(n>0)个顶点的简单无向图中,最多含有_____________条边。
最新回复
(
0
)