首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
admin
2019-05-14
27
问题
设f(x)在(-∞,+∞)内二次可导,令F(x)=
求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(x)的定义及题设可知F(x)分别在(一∞,x
0
],(x
0
,+∞)连续,分别在(一∞,x
0
),(x
0
,+∞)二次可导.从而,为使F(x)在(一∞,+∞)二次可导,首先要使F(x)在x=x
0
右连续,由于F(x
0
一0)=F(x
0
)=f(x
0
),F(x
0
+0)=C,故 F(x)在(一∞,+∞)连续 [*]C=f(x
0
). 在C=f(x
0
)的情况下,F(x)可改写成 [*] 从而[*] 故 F(x)在(一∞,+∞)可导 [*]B=f′(x
0
). 在C=f(x
0
),B=f′(x
0
)的情况下,F(x)可改写成 [*] 故 F(x)在(一∞,+∞)内二次可导[*]f″(x
0
). 综合得,当A=[*]f″(x
0
),B=f′(x
0
),C=f(x
0
)时F(x)在(一∞,+∞)上二次可导.
解析
转载请注明原文地址:https://jikaoti.com/ti/IuoRFFFM
0
考研数学一
相关试题推荐
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。证明xn存在,并求该极限。
设常数a>,函数f(x)=ex一ax2,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
设an为正项级数,下列结论中正确的是()
设I=∫-aadx(x2+y2)dx。(Ⅰ)作出I的积分域Ω的图形;(Ⅱ)把I改变为先对x,次对y,再对z的三次积分;(Ⅲ)把I改变为柱坐标系的累次积分;(Ⅳ)把I改变为球坐标系的累次积分;(V)任选一种积分顺序计算,的值。
设二维随机变量(X,Y)服从二维正态分布,其分布参数μ1=μ2=0,σ12=σ22=1,ρ=/2.求证:(Ⅰ)关于X的边缘分布是正态分布;(Ⅱ)在X=χ条件下,关于Y的条件分布也是正态分布.
若存在,则常数a=_______.
设a≠0为常数,f(χ)在(-∞,+∞)连续,考察一阶线性常系数方程y′+ay=f(χ)(χ∈(-∞,+∞)).(*)(Ⅰ)求通解的表达式;(Ⅱ)设a>0,f(χ)=b,y(χ)为方程(*)的任意一个解,求y(
设函数f(χ)在闭区间[a,b]上连续,在开区间(a,b)内二阶可导,且f(a)=f(c)=f(b),其中c是(a,b)内的一点,且在[a,b]内的任何区间I上f(χ)不恒等于常数.求证:在(a,b)内至少存在一点ξ,使f〞(ξ)<0.
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
随机试题
如图所示,行驶过程中遇前方有障碍物的情况怎么办?
甲、乙、丙、丁共有一轮船,甲占该船70%份额。现甲欲将该船作抵押向某银行贷款500万元。如各共有人事先对此未作约定,则甲的抵押行为:()
我国城市中的居住用地一般可分为居住区、居住小区与()。
一个容器内储有1mol氢气和1mol氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是()。
背景资料:某机电工程施工单位承包了一项设备总装配厂房钢结构安装工程,合同约定,钢结构主体材料H型钢由建设单位供货。根据住建部关于《危险性较大的分部分项工程安全管理办法》的规定,本钢结构工程为危险性较大的分部分项工程。施工单位按照该规定的要求,对钢结构安装
下列关于《注册消防工程师资格考试实施办法》的说法中,正确的是()。
小张拟认购开放式基金,在开立基金账户和资金账户后于20×8年6月11日提交了认购申请表,那么,自()起小张可到办理认购的网点查询认购申请的受理情况。
弗洛伊德的人格结构层级包括()。
栈结构不适用于下列哪一种应用?
Here,soprofligatehasitsusebecometheairconditionerisalmost______theautomobileofthenationaltendencytooverindulge
最新回复
(
0
)