首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2018-09-25
32
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
用拉格朗日中值定理. 当a=0时,等号成立; 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理条件,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得[f(a+b)-f(b)]-[f(a)-f(0)]=af’(ξ
2
)-af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://jikaoti.com/ti/Jo2RFFFM
0
考研数学一
相关试题推荐
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关于X的条件概率密度.
设二维随机变量(X,Y)的联合密度函数为试求:(Ⅰ)数学期望EX,EY;(Ⅱ)方差DX,DY;(Ⅲ)协方差Cov(X,Y),D(5X一3Y).
已知(X,Y)的概率分布为(Ⅰ)求Z=X—Y的概率分布;(Ⅱ)记U1=XY,V1=,求(U1,V1)的概率分布;(Ⅲ)记U2=max(X,Y),V2=min(X,Y),求(U2,V2)的概率分布及U2V2的概率分布.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
证明(α,β,γ)2≤α2β2γ2并且等号成立的充要条件是α,β,γ两两垂直或者α,β,γ中有零向量.
将下列函数f(x)展开成x的幂级数并求f(n)(0):(Ⅰ)f(x)=g(x),其中g(x)=(Ⅱ)f(x)=dt.
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序将I=f(x,y)dxdy化成累次积分.
利用柱坐标变换求三重积分:I=zdxdydz,Ω:x2+y2≤z,x2+y2+z2≤2.
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为_____,方差为_______.
随机试题
小青龙汤的功用是()
A.清热化湿,理气和中B.利湿化浊,清热解毒C.利水渗湿,温阳化气D.宣畅气机,清利湿热E.清热泻火,利水通淋
金融机构是洗钱的唯一渠道。()
甲企业于2012年1月1日以3200万元的价格收购了乙企业80%股权。在购买日,乙企业可辨认净资产的公允价值为3000万元。假定乙企业的所有资产被认定为一个资产组,而且乙企业的所有可辨认资产均未发生资产减值迹象,未进行过减值测试。2012年年末,甲企业确定
公务员符合下列哪些条件,可以提前退休?()
古文明一般形成于中维度大河沿岸的内陆地区,适宜的气候、肥沃的土壤条件较适宜于人类活动。而随着科学技术的发展,这些要素逐渐被弱化,人类活动已经从内陆转向沿海,出现了现代沿海向内陆的经济梯度。对比古文明与现代沿海文明的环境差异,其中最核心的是交通和可接近性对相
以下说法正确的是:
我国的人民民主专政是马列主义关于无产阶级专政的理论同我国革命具体实践相结合的产物,是我们党和毛泽东同志的一个创造,是一种新型的民主制度,这种制度的“新”体现在
TheproposaltolayatelegraphcablefromEuropetoAmericamadeoceanographicstudiestakeona(n)______."Defied"inthe5t
What’stheforeignministers’purposeforthemeetinginKyotoJapan?
最新回复
(
0
)