首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在ξ∈(0,1),使得f′(∈)=1;
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在ξ∈(0,1),使得f′(∈)=1;
admin
2019-06-09
34
问题
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
存在ξ∈(0,1),使得f′(∈)=1;
选项
答案
证一 由f′(ξ)=1得f′(ξ)一1=0,[f(x)一x]′∣
x=ξ
=0,因而令辅助函数 F(x)=f(x)-x.因F(1)=f(1)一l=l一1=0,又f(x)为奇函数,故f(0)=0,于是F(0)=f(0)-0=0.显然F(x)在[0,1]上满足罗尔定理的其他条件,由该定理知,存在ξ∈(0,1), 使F′(ξ)=0,即f′(ξ)一1=0,f′(ξ)=1. 证二 也可用拉格朗日中值定理证之,注意到f(1)=1,f(0)=0,对f(x)在[0,1]上使用拉格朗日中值定理得到:存在ξ∈(0,1)使f(1)一f(0)=(1—0)f′(ξ),即f′(ξ)=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/EpLRFFFM
0
考研数学二
相关试题推荐
已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=_________。
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为A的转置矩阵。如果kA的逆矩阵为A*一|AT|A-1,则k=________。
设f(μ,ν)具有连续偏导数,且满足fμ’(μ,ν)+fν’(μ,ν)=μν。求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设方程组与方程(2)x1+2x2+x3=a一1有公共解,求a的值及所有公共解。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体体积。
设x>0,可微函数y=f(x)与反函数x=g(y)满足∫0f(x)g(t)dt=.求f(x).
设f(χ)∈C[i,+∞),广义积分,∫1+∞f(χ)dχ收敛,且满足f(χ)=f(χ)dχ,则f(χ)=_______.
随机试题
试述动平衡机的组成。
咀嚼时,牙齿实际承受的咀嚼力量为
患儿男,4岁,声嘶3个月来诊,门诊就诊查电子喉镜示声带前端淡红色、乳头状新生物,声带活动正常。入院后首选的治疗方案为
A.登革热B.黑热病C.莱姆病D.地方性斑疹伤寒E.流行性斑疹伤寒虱传播
甲是某产品的专利权人,乙于2008年3月1日开始制造和销售该专利产品。甲于2009年3月1日对乙提起侵权之诉。经查,甲和乙销售每件专利产品分别获利为二万元和一万元。甲因乙的侵权行为少销售100台,乙共销售侵权产品300台。关于乙应对甲赔偿的额度,下列哪一选
2015年1月1日,甲公司发行5年期一次还本、分期付息的可转换公司债券。该债券面值为1000万元,票面年利率为6%,利息按年支付,发行价格为1020万元,另支付发行费用80万元。债券发行1年后可转换为甲公司普通股股票。经计算,该项可转换公司债券负债成分的公
什么是动机?其主要功能包括哪些?
某项工程由甲、乙、丙三个工程队负责施工,他们将工程总量等额分成了三份同时开始施工。当乙队完成了自己任务的一半时,甲队派出一半的人力加入丙队工作。最后三队同时完成任务。则甲、乙、丙三队的施工速度比为:
下列命题属于历史唯心主义观点的是
【B1】【B10】
最新回复
(
0
)