首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 考虑二元函数f(x,y)在点(x0,y0)处下面4条性质: (1)f(x,y)在点(x0,y0)处连续; (2)f(x,y)在点(x0,y0)处的两个偏导数连续; (3)f(x,y)在点(x0,y0)处可微; (4)f(x,y)在点(x0
[2002年] 考虑二元函数f(x,y)在点(x0,y0)处下面4条性质: (1)f(x,y)在点(x0,y0)处连续; (2)f(x,y)在点(x0,y0)处的两个偏导数连续; (3)f(x,y)在点(x0,y0)处可微; (4)f(x,y)在点(x0
admin
2019-04-08
26
问题
[2002年] 考虑二元函数f(x,y)在点(x
0
,y
0
)处下面4条性质:
(1)f(x,y)在点(x
0
,y
0
)处连续;
(2)f(x,y)在点(x
0
,y
0
)处的两个偏导数连续;
(3)f(x,y)在点(x
0
,y
0
)处可微;
(4)f(x,y)在点(x
0
,y
0
)处的两个偏导数存在.
若用“P=>Q”表示可由性质P推出性质Q,则有( ).
选项
A、(2)=>(3)=>(1)
B、(3)=>(2)=>(1)
C、(3)=>(4)=>(1)
D、(3)=>(1)=>(4)
答案
A
解析
若f(x,y)在点(x
0
,y
0
)处的两个偏导数连续,则f(x,y)在点(x
0
,y
0
)处可微,而f(x,y)在(x
0
,y
0
)处可微时,又必有f(x,y)在(x
0
,y
0
)处连续.因而有(2)=>(3)=>(1).仅A入选.
转载请注明原文地址:https://jikaoti.com/ti/BfoRFFFM
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率.
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
对随机变量X,已知EekX存在(k>0常数),证明:P{X≥ε}≤.E(ekX),(其中ε>0).
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成a的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O.求正交矩阵Q,使得在正交变换x=QY下二次型化为标准形.
对右半空间x>0内的任意光滑有侧封闭曲面∑,有xf(x)dydz—xyf(x)dzdx—e2xzdxdy=0,其中f(x)在(0,+∞)内具有一阶连续的偏导数,且f(0+0)=1,求f(x).
(2011年)(I)证明:对任意的正整数n,都有成立.(Ⅱ)设证明数列{an}收敛.
随机试题
学习中外秘书比较的要领包括【】
正常人神经根的滑动度为
关于法的发展、法的传统与法的现代化,下列说法正确的是:
根据新《商检法》的规定,伪造、变造、买卖或盗窃商检单证、印章、标志、封识、质量认证标志,尚不够刑事处罚的,由商检机构责令改正,没收违法所得,并处( )的罚款。
未取得报关从业资格从事报关业务的,予以取缔,没收违法所得,可以并处1万元以下罚款。()
受练习效应影响较大的情况,具体表现为()。
下列句子中加横线的成语使用正确的一项是()。
A、 B、 C、 D、 C计算机网络根据不同的标准和角度可划分为不同的种类,每种分类都体现了计算机网络的不同特征。由于计算机网络覆盖范围的不同,其采用的传输方式及提供的服务种类也不同,体现了不同网络的技术特征
我国制定的SQL国家标准(GBl2911),等效于国际标准的______。
ReadingforpleasureistheeasiestwaytobecomeabetterreaderinEnglish.Itisalsothemostimportantway.Somestuden
最新回复
(
0
)