首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似. (Ⅱ)设, 求可逆矩阵P,使得P﹣1AP=B.
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似. (Ⅱ)设, 求可逆矩阵P,使得P﹣1AP=B.
admin
2021-12-09
71
问题
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.
(Ⅱ)设
,
求可逆矩阵P,使得P
﹣1
AP=B.
选项
答案
(Ⅰ)设A,B的特征值为λ
1
,λ
2
,…,λ
n
,因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
1
, 使得[*] 于是P
1
﹣1
AP
1
=P
2
﹣1
BP
2
,或(P
1
P
2
﹣1
)
﹣1
A(P
1
P
2
﹣1
)=B,令P=P
1
P
2
﹣1
,则P
﹣1
AP=B,即矩阵A,B相似. (Ⅱ)由|λE-A|=[*]=(λ+1)(λ-1)
2
=0得λ
1
=﹣1,λ
2
=λ
3
=l;由|λE-B|=[*]=(λ+1)(λ-1)
2
=0得λ
1
=﹣1,λ
2
=λ
3
=1.由E+A=[*]得A的属于λ
1
=﹣1的线性无关特征向量为[*]由E-A=[*]得A的属于特征值λ
2
=λ
3
=1的线性无关的特征向量为[*]令P
1
=[*],则P
1
﹣1
AP
1
=[*]由E+B=[*]得B的属于λ
1
=﹣1的线性无关特征向量为[*]由E-B=[*]得B的属于特征值λ
2
=λ
3
=1的线性无关的特征向量为[*]令P
2
=[*],则P
2
﹣1
BP
2
=[*]故P=P
1
P
2
﹣1
=[*],使得P
﹣1
AP=B.
解析
转载请注明原文地址:https://jikaoti.com/ti/9ZfRFFFM
0
考研数学三
相关试题推荐
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
设函数f(x)在|x|<δ内有定义且|f(x)|≤x2,则f(x)在x=0处().
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④E一A。α肯定是其特征向量的矩阵个数为()
设α1,α2,…,αs均为n维向量,下列结论中不正确的是()
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a、b为非零常数,则
已知随机变量X服从标准正态分布,Y=2X2+X+3,则X与Y()
f(x),φ(x)在点x=0的某邻域内连续,且当x→0时f(x)是φ(x)的高阶无穷小,则当x→0时的
设随机变量X和Y独立同分布,记U=X—Y,V=X+Y,则随机变量U与V必然()
当u>0时f(u)有一阶连续导数,且f(1)=0,又二元函数z=f(ex—ey)满足=1,则f(u)=().
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
随机试题
简述实际碳酸氢盐的概念、正常值及其临床意义。
下颌切牙与上颌切牙的区别中,不正确的是
初产妇:孕40周,阵发性腹痛10小时,查:LOA,已入盆,胎心率170次/min,子宫处于持续紧张状态,间歇期亦不能放松,产妇呼痛不已,查:宫口开大1cm,S=0,观察2小时。产程无进展,诊断为
下列属于抗氧化剂的有()。
下列不属于行政行为特征的是()。
下列选项中,属于间接税的是( )。
国有企业甲、上市公司乙、自然人丙协商,拟共同投资设立一合伙企业从事贸易业务。根据合伙企业法律制度的规定,下列选项中,错误的有()。
洋务运动失败的根本原因是()。
小海是一名初中学生,在老师眼里是那种“大错不犯,小错不断”类型的学生。暑假里,小海留了一头长发,并且染成黄色,老师认为这违反学校的规定,责令小海减掉头发;小海认为留长发是个人的事,拒不剪掉头发。一次老师在与小海沟通中,明确表示让小海剪掉头发,否则第二天就不
Ineverycultivatedlanguagetherearetwogreatclassesofwordswhich,takentogether,comprisethewholevocabulary.First,t
最新回复
(
0
)