首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明: 存在ξ∈(0,3),使f’’(ξ)=0。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明: 存在ξ∈(0,3),使f’’(ξ)=0。
admin
2018-12-19
43
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
证明:
存在ξ∈(0,3),使f’’(ξ)=0。
选项
答案
因为f(2)+f(3)=2f(0),即[*]又因为f(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0)。 又因为函数在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f’’(ξ)=0。
解析
转载请注明原文地址:https://jikaoti.com/ti/3EWRFFFM
0
考研数学二
相关试题推荐
(2005年)设函数u(χ,y)=φ(χ+y)+φ(χ-y)+∫χ-yχ+yφ(t)dt,其中函数φ具有二阶导数,φ具有一阶导数,则必有【】
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2010年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2013年)设函数f(χ)=lnχ+.(Ⅰ)求f(χ)的最小值;(Ⅱ)设数列{χn}满足lnχn+<1.证明存在,并求此极限.
设y1=ex,y2=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为____________.
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
随机试题
鼻腔
建筑高度超过100m的建筑物,其设在屋顶平台上的共用天线,距屋顶直升机停机坪的距离不应小于下列哪个数值?[2006年第107题]
被告改变原违法行政行为,原告仍要求确认原行政行为违法的,人民法院判决()
(2014年)《唐律·名例律》规定:“诸断罪而无正条,其应出罪者,则举重以明轻;其应人罪者,则举轻以明重”。关于唐代类推原则,下列哪一说法是正确的?()
下列属于电算主管工作的有()。
济南市红十字会一直属单位进口一批外国赠与的残疾人专用仪器,经海关审批后,该批货物获免税进口。2004年10月2日,载运该货物的运输工具抵达青岛港,收货人持“进出口货物征免税证明”向青岛海关进行了申报,青岛海关在审核申报后免税放行。该货物在进口后,在(
调制要求m0+m(t)≥0,否则,经过调制,包络失真。()
在数据库设计中,用E-R图来描述信息结构但不涉及信息在计算机中的表示的阶段是
Readthearticlebelowaboutmarketingmanagement.Forquestions18—20,markoneletter(A,B,C,D)onyouranswersheetforthe
【B1】【B16】
最新回复
(
0
)