首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设线性方程组 设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
admin
2021-02-25
50
问题
设线性方程组
设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),且β
1
=(-1,1,1)
T
,β
2
=(1,1,-1)
T
是该方程组的两个解,写出此方程组的通解.
选项
答案
当a
1
=a
3
=k,a
2
=a
4
=-k(k≠0)时方程组为 [*] 即 [*] 因为[*],故r(A)=r(B)=2,方程组有解,且其对应的齐次线性方程组的基础解系有3-2=1个解向量,于是得 [*] 于是方程组的通解为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/ypARFFFM
0
考研数学二
相关试题推荐
已知矩阵A=有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使P-1AP成为对角矩阵.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>-,证明(1)中的c是唯一的.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
设f(x)连续,且f(x)=2∫0xf(x-t)dt+ex,求f(x).
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
设x1=10,xn+1=(n=1,2,…),试证数列{xn}极限存在,并求此极限.
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设f(χ)=3χ2+χ2|χ|,则使f(n)(0)存在的最高阶数n=
随机试题
下列程序中,定义了3个变量1,s,b,类型分别为long,short,byte并赋了初始值,分别为-1,1,-1,要求对1做按位左移运算,对s做按位右移运算,对b做无符号按位右移运算,移动的位数均为10位。请将程序补充完整。程序运行结果如下:
患者,男,72岁。习惯性便秘,大便3日1次,干结如羊粪状,伴口干咽燥,皮毛干枯,舌红少津,脉细。可选用的药物是
若干个单项工程是否同属于一个建设项目,取决于()。
地籍图上二类界址点相对于相邻图根点的点位中误差不得超过()。
下列关于工程项目管理组织机构形式的表述中,正确的是()。
巴塞尔委员会规定的可能造成实质性损失的操作风险事件类型包括()。
张老师在讲授《京剧大师梅兰芳》这堂音乐课时,带着自身对于梅兰芳先生的缅怀以及对于国粹京剧的赞美之情,用这样的情绪来带动整个课堂,并激起学生的情感共鸣。此教学案例运用了歌唱教学的()原则?
下列选项中,符合所给图形的变化规律的是:
在学籍管理中,设有4个表,关系模式分别为:STUDENT(SNO,SNAME,SEX,BIRTHDAY.CLASS);TEACHER(TNO,TNAME,SEX,BIRTHDAY,PROFESSION,DEPARTMENT);
TheMastersofBusinessAdministration(MBA),thebestknownbusinessschoollabel,isanintroductiontogeneralmanagement.Th
最新回复
(
0
)