首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
admin
2019-07-28
48
问题
设f(x)在区间[0,1]上可微,且满足条件
,试证:存在ξ∈(0,1),使f(ξ)+ξf
’
(ξ)=0.
选项
答案
由结论可知,若令φ(x)=xf(x),则φ
’
(x)=f(x)+xf
’
(x). 因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件. 令φ(x)=xf(x),由积分中值定理可知,存在[*] 于是φ(1)=f(1)=φ(η),并且φ(x)在[η,1]上连续,在(η,1)上可导, 故由罗尔定理可知,存在ξ∈(η,1)[*](0,1)使得φ
’
(ξ)=0,即f(ξ)+ξf
’
(ξ)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/DSERFFFM
0
考研数学二
相关试题推荐
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问£为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
求微分方程y〞+4y′+4y=eaχ的通解.
求微分方程y〞+2y′-3y=(2χ+1)eχ的通解.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设=A,求
[*]
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(χy+cosχsiny)dσ等于().
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.(2)设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕z轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(x);(2)f(x)的极值.
随机试题
A.祛痰B.开窍C.二者均是D.二者均非(2002年第107,108题)皂荚具有的功效是()
设备工程项目信息表现形式多样并且有明显的系统性,在对设备工程项目信息进行编码时,应坚持()的原则。
在PowerPoint2003环境下,放映幻灯片的快捷键为__________。()
下列适用于家庭保健,尤其是出差和旅游使用的医疗器械是
阅读以下语文会考试题,按照要求答题。坚信一首诗的沉默比所有的扩音器加起来更清晰,比机枪的口才、野炮的雄辩更持久。坚信文字的冰库能冷藏最烫的激情、最新鲜的想象。时间,你带得走歌者带不走歌。阅读上述文字,下列哪个选项最接近这段文字的旨意?
根据所给材料,回答问题。继共享睡眠舱、共享雨伞、共享充电宝等共享模式之后,有高校学生推出共享厨房,某公交站台惊现共享马扎。日前,又有“共享健身房”出现在北京一小区内。共享业态究竟能释放出多少可能性,引人遐想。“逻辑可以让你从A走到B,但
(2012年浙江.111)人类科技发展的历程中,先后出现了下列科技词语:(1)电子计算机;(2)量子力学;(3)航天器;(4)转基因水稻。按时间先后顺序排列正确的是()。
长期生活在同一环境中的不同种植物常常表现为同一生活型,这是由于生物之间的结果。
Bethanyisworkingonamandatoryaccesscontrol(MAC)system.ShehasbeenworkingonafilethatwasclassifiedasSecret.She
Theworldhasneverbeenmorecloselyandintricatelyconnected.Ourbehavior【C1】______theenvironmentweallshare,andweare
最新回复
(
0
)