设函数f’(x)在[a,b]上连续,且f(a)=0,试证明: ∫abf2(x)dx≤∫ab[f’(x)]2dx.

admin2016-06-25  29

问题 设函数f’(x)在[a,b]上连续,且f(a)=0,试证明:
    ∫abf2(x)dx≤ab[f’(x)]2dx.

选项

答案因为f2(x)=[f(x)一f(a)]2=[∫axf’(t)dt]2,而 [∫axf’(t)dt]2≤(x一a)∫ax[f’(t)]2dt≤(x一a)∫ab[f’(t)]2dt (施瓦茨不等式), 所以 ∫abf2(x)fx≤∫ab(x一a)dx∫ab[f’(t)]2dt=[*][f’(x)]2dx.

解析
转载请注明原文地址:https://jikaoti.com/ti/sbzRFFFM
0

最新回复(0)