设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则( )正确.

admin2019-08-12  38

问题 设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则(  )正确.

选项 A、对任何数c1,c2,c3,c1γ1+c2γ2+c3γ3都是AX=β的解;
B、2γ1-3γ23是导出组AX=0的解;
C、γ1,γ2,γ3线性相关;
D、γ12,γ23是AX=0的基础解系.

答案B

解析i=β,因此A(γ1-3γ23)=2β-3β+β=0,即2γ1-3γ23是AX=0的解,(B)正确.
    c1γ1+c2γ2+c3γ3都是AX=β的解c1+c2+c3=1,(A)缺少此条件.
当r(A)=n-2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ1,γ2,γ3线性相关.(C)不成立.
    γ12,γ23都是AX=0的解,但从条件得不出它们线性无关,因此(D)不成立.
转载请注明原文地址:https://jikaoti.com/ti/pRERFFFM
0

最新回复(0)