设函数f(x,y)在(2,-2)处可微,满足f(sin(xy)+2cosx,xy-2cosy)=1+x2+y2+o(x2+y2),这里o(x2+y2)表示比x2+y2高阶的无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,-2,f(2,

admin2019-05-28  40

问题 设函数f(x,y)在(2,-2)处可微,满足f(sin(xy)+2cosx,xy-2cosy)=1+x2+y2+o(x2+y2),这里o(x2+y2)表示比x2+y2高阶的无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,-2,f(2,-2))处的切平面.

选项

答案因为f(x,y)在(2,-2)处可微,所以f(x,y)在(2,-2)处连续, 取(x,y)=(0,0)得f(2,-2)=1. 因为f(x,y)在(2,-2)处可微,所以f(x,y)在(2,-2)处可偏导, [*] [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/ogQRFFFM
0

最新回复(0)