首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2018-01-23
87
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
1
),A(α
2
-α
3
)=-(α
2
-α
3
), 得A的另一个特征值为λ
2
=-1.因 为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以 λ
2
=-1为矩阵A的二重 特征值,即A的特征值为2,-1,-1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定 可以对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/jEKRFFFM
0
考研数学三
相关试题推荐
设A是三节矩阵,P是三阶可逆矩阵,已知P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0,则p是().
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
用配方法化二次型f(x,y,z)=x2+2y2+5z2+2xy+6yz+2zx为标准形,并求所用的可逆线性变换.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求Anβ.
设f(x)在[a,b]上连续,且f(x)>0,又证明:(1)F′(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
设A为三阶实对称矩阵,且存在可逆矩阵P=,使得p-1AP=.又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)-1;(3)计算行列式|A*+E|.
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是().
设矩阵A与B相似,且(1)求a,b的值;(2)求可逆矩阵P,使P-1AP=B.
已知A=,求A的特征值,并讨论A可否相似对角化.
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
随机试题
牡蛎散中偏于阴虚而见手足心热、潮热、舌红少苔者.没有加
与其他抗结核病药联合使用的药物是口服可用于肠道感染的药物是
橡胶支座表面气泡、杂质总面积不得超过支座平面面积的()。
PLC机按其输出方式分有()。
要约邀请不是合同成立过程中的必经过程,下列属于要约邀请的是( )。
2月份到期的执行价格为380美分/蒲式耳的玉米期货看跌期权(A),其标的玉米期货价格为380美分/蒲式耳,权利金为25美分/蒲式耳;3月份到期的执行价格为360美分/蒲式耳的玉米期货看跌期权(B),其标的玉米期货价格为380美分/蒲式耳,权利金为25美分/
战略性人力资源管理将组织的注意力集中于()。
下列属于极端状态的市场有()。
患儿,女性,4岁,在常规检查口腔情况时,发现所有乳牙均已萌出,并且已建立咬合关系,临床检查发现下列4种情况,哪一种是不符合这一年龄段合关系的特点()。
Salesgirl:______Customer:No.I’dlikealong-sleevedshirtinyellow,medium.Salesgirl:Ithinkwe’reoutofyoursize.Custo
最新回复
(
0
)