首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组 A*x=0的通解.
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组 A*x=0的通解.
admin
2021-02-25
46
问题
设n阶方阵A=(a
ij
)
n×n
的每行元素之和为0,其伴随矩阵A
*
≠O,若a
11
的代数余子式A
11
≠0,求方程组
A
*
x=0的通解.
选项
答案
由已知 [*] 所以方程组Ax=0有非零解,从而r(A)<n,又由于A
*
≠O,r(A)≥n-1,所以r(A)=n-1,从而r(A
*
)=1,因此方程组A
*
x=0的基础解系有n-1个解向量,又r(A)=n-1,所以|A|=0,于是A
*
A=|A|E=O,因此矩阵A的n个列向量都是方程组A
*
x=0的解,若令A=(α
1
,α
2
,…,α
n
),由于a
11
的代数余子式A
11
≠0,且r(A)=n-1,所以向量组α
2
,…,α
n
线性无关,从而A
*
x=0的基础解系为α
2
,…,α
n
,于是A
*
x=0的通解为k
1
α
2
+…+k
n-1
α
n
,其中k
1
,k
n-1
为任意常数.
解析
本题是抽象线性方程组的求解问题.要先确定矩阵A的秩r(A),再由r(A)和r(A
*
)的关系确定A
*
的秩r(A
*
),然后由A
*
A=|A|E=O确定A
*
x=0的通解.
转载请注明原文地址:https://jikaoti.com/ti/cUARFFFM
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
随机试题
A、Improvingtheirbrainfunction.B、Regulatingtheirbreathingrate.C、Slowingdowntheirageingprocess.D、Acceleratingtheirb
下列有关对评估行政管理部门的履职要求的说法中,不正确的是()。
除AFP外,可以提高低AFP型肿瘤诊断率的是
骨髓检查原始单核细胞40%,原始粒细胞22%,幼稚单核细胞15%,早幼粒细胞8%,最可能的诊断是
侯女士,35岁,妊娠35周并发妊高征,2小时前突然发生持续性腹痛伴阴道少量流血。首先考虑为()
在十六届五中全会上,党和国家坚持以科学发展观为指导,从经济和社会发展的全局出发,不断深化对安全生产规律的认识,提出了()方针。
账户一般可以提供的金额指标是( )。
期末发生的下列事项中,影响当年度利润表中营业利润的有()。
制度型社会福利是把社会福利看成工业社会的一种正常功能,以提供制度化的、针对全体人民的普遍福利为标志。残补型社会福利是指社会福利制度(国家的社会福利机构)只扮演常态社会结构——家庭和市场功能失败后的补救角色。根据上述定义,下列属于制度型社会福利的是(
下述函数功能是______。intfunr(char*x){char*y=x;while(*y++);returny-x-1;}
最新回复
(
0
)