首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: α1,α2,…,αn-1ξ线性无关。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: α1,α2,…,αn-1ξ线性无关。
admin
2019-07-22
33
问题
设向量α
1
,α
2
,…,α
n-1
是n—1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…,α
n-1
均正交的n维非零列向量。证明:
α
1
,α
2
,…,α
n-1
ξ线性无关。
选项
答案
设k
1
α
1
+k
1
α
2
+…+k
n-1
α
n-1
+k
0
ξ
1
=0,两边取转置得 k
1
α
1
T
+k
2
α
2
T
+…+k
n-1
α
n-1
T
+k
0
ξ
1
T
=0, 上式两端同时右乘ξ
1
得 k
1
α
1
T
ξ
1
+k
2
α
2
T
ξ
1
+…+k
n-1
α
n-1
T
ξ
1
+k
0
ξ
1
T
ξ
1
=0,注意到α
i
T
ξ
1
=0(i=1,2,…,n一1),所以k
0
ξ
1
T
ξ
1
=0.由ξ
1
≠0可得ξ
1
T
ξ
1
≠0,于是k
0
=0,从而 有k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0。 又因为α
1
,α
2
,…,α
n-1
线性无关,所以k
1
=k
2
=…=k
n-1
=k
0
=0,故α
1
,α
2
,…,α
n-1
,ξ
1
,线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/hmERFFFM
0
考研数学二
相关试题推荐
设u=,求du.
设f(χ,y)=讨论函数f(χ,y)在点(0,0)处的连续性与可偏导性.
设f(χ,y)连续,且f(χ,y)=3χ+4y+6+o(ρ),其中ρ=,则dz|(1,0)=_______.
设f二阶可偏导,z=f(χy,χ+y2),则=_______.
设f(χ)=χe2χ+2∫01f(χ)dχ,求∫01f(χ)dχ.
设向量组α1,α2,…,αs为齐次线性方程组AX一0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,冥中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设f(x)=3x2+Ax-3(x>0).A为正常数,问A至少为多少时f(x)≥20?
随机试题
割膏腴之壤,遂散六国之从。
发热,不恶寒反恶热,心烦口渴,舌红苔黄,脉数者,应诊断为()(2003年第26题)
引起房地产价格上涨的原因主要有()。
在理财规划师所在机构是合伙机构情况下,理财规划服务合同中当事人条款应列明的内容包括( )。
关于要约邀请的不正确的说法是()。
图4是腐乳制作的流程示意图。问题:制作过程中加盐、卤汤的共同作用是_________。
根据我国宪法的规定,有权提出宪法修订有效议案的主体是()。
2012年9月15日,是我国第8届全国科普日,全国科普日由中国科协发起,定在每年九月的第三个双休日。本届科普日的主题是()。
Theinstitution’sabilitytomeetits______growthlevelswilldependonthecommitmentofallstaff.
Tohismother’srelief,Tomhadperfectlyrecoveredfromhis(ill)______.
最新回复
(
0
)