首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2021-11-25
25
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示。 因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://jikaoti.com/ti/YjlRFFFM
0
考研数学二
相关试题推荐
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.求常数a,b,c.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量a,Β,使得A=aΒT.
在空间直角坐标系的原点处,有一质量为M1的恒星,另有一质量为M2的恒星在椭圆上移动,问两恒星间万有引力大小何时最大,何时最小。
设三角形三边的长分别为a,b,c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;
随机试题
患者,男性,38岁。无明显诱因出现右膝关节肿胀不适2年余,伴行走时关节打软、交锁症状,无全身症状,查体在髌股关节周围尤其是髌上囊处可扪及滑膜增厚,局部皮温略增高,但不红。提示:如果目前患者体温39.1℃,左膝关节疼痛、肿胀剧烈,浮髌实验(+)。本病最
有关消化性溃疡的病理描述哪项不正确
急性肾盂肾炎的女青年,治愈出院时护士给予保健指导,其中不妥的是
医院查房时,要求医生每接触一次患者都要进行手部消毒,其目的是
气滞心脉的临床特点是
总账账户对所属明细账户起统驭作用,明细账户对总账账户起辅助作用。()
通过对本期主要产品甲产品的毛利率执行分析程序,做出的下列职业判断中,不恰当的是( )。下列有关收入的处理建议中,不恰当的是( )。
2007年春节前夕,A县公安局在治安检查中发现B公司在没有申领卫生可许证的情况下假冒C公司的商标生产香肠,A县公安局随即对没有销售的香肠进行了扣押。15日后,公安局将香肠移交给A县质监局,经质监局检验,该香肠质量不合格,大肠杆菌严重超标。A县质监局对于如何
A.You’llonlyneedsomelightwoolclothingandsomejacketsandshirtsB.I’vecaughtacoldC.Wehavegotcontinentalclimatet
执行以下语句段后,xy的值是()。int*pt,xy;xy=200;pt=&xy;xy=*pt+30;
最新回复
(
0
)