[2007年] 设线性方程组 ① 与方程 (Ⅱ):x1+2x2+x3=a一1, ② 有公共解.求a的值与所有公共解.

admin2019-05-10  48

问题 [2007年]  设线性方程组

与方程
(Ⅱ):x1+2x2+x3=a一1,    ②
有公共解.求a的值与所有公共解.

选项

答案 将方程组(I)与(Ⅱ)联立解之,即得所求的公共解. 将方程组①与方程②联立得到 [*]③ 即[*],亦即AX=b. 显然,方程组③的解既满足①又满足②;反之,方程组①与②的公共解必满足③,因此为求方程组①与②的公共解只需求方程组③的解即可. 用初等行变换将其增广矩阵[*]化为阶梯形矩阵: [*] (1)当a=1时,[*] 秩(A)=秩[*]=2<3,方程组③的一个基础解系只含n一秩(A)=3—2=1个解向量α=[一l,0,1]T.因而方程组①与②的所有公共解为kα(k为任意实数). (2)当a=2时,秩(A)=秩([*])=3=n,方程组③有唯一解,此时 [*] 故方程组③的解为β=[0,1,一1]T,即方程组①与方程②有唯一公共解为β=[0,1,一1]T

解析
转载请注明原文地址:https://jikaoti.com/ti/SLLRFFFM
0

最新回复(0)