设函数y=f(x)由方程e2x+y一 cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为________.

admin2017-04-24  69

问题 设函数y=f(x)由方程e2x+y一 cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为________.

选项

答案x一2y+2=0.

解析 方程e2x+y—cos(xy)=e一1两边对x求导得
(2+y’)e2x+y+sin(xy)(y+xy’)=0
将x=0,y=1代入上式得y’=一2.
则y=f(x)在(0,1)处的法线方程为y一1=
即  x一2y+2=0.
转载请注明原文地址:https://jikaoti.com/ti/PtzRFFFM
0

最新回复(0)