设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得[f(a)-f(ξ)]/[g(ξ)-g(b)]=f’(ξ)/g’(ξ).

admin2022-10-12  32

问题 设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得[f(a)-f(ξ)]/[g(ξ)-g(b)]=f’(ξ)/g’(ξ).

选项

答案令F(x)=f(x)g(b)+f(a)g(x)-f(x)g(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(6)=f(a)g(b),由罗尔定理,存在ξ∈(a,b),使得F’(ξ)=0,而F’(x)=f’(x)g(b)+f(a)g’(x)-f’(x)g(x)-f(x)g’(x),所以[f(a)-f(ξ)]/[g(ξ)-g(b)]=f’(ξ)/g’(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/gZGRFFFM
0

最新回复(0)