首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( ).
[2011年] 设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( ).
admin
2019-05-10
37
问题
[2011年] 设A=[α
1
,α
2
,α
3
,α
4
]是四阶矩阵,A
*
为A的伴随矩阵,若[1,0,1,0]
T
是方程组AX=0的一个基础解系,则A
*
X=0的基础解系可为( ).
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
先求A
*
X=0的一个基础解系所含解向量的个数.再由A
*
A=∣A∣E=0E=0得到A的列向量为A
*
X=0的解,且A的列向量组中含有A
*
X=0的基础解系,最后利用AX=0的基础解系求得A的列向量之间的线性关系,从而确定A
*
X=0的基础解系.
因AX=0的基础解系只含一个解向量[1,0,1,0]
T
,故n一秩(A)=4一秩(A)=1,即秩(A)=3.因而秩(A
*
)=1.于是A
*
X=0的一个基础解系必含n一秩(A
*
)=4一l=3个解向量,这就排除了(A),(B)选项.
因秩(A)=3,故∣A∣=0,所以A
*
A=∣A∣E=O.又因秩(A)=3,故A的列向量组中含有A
*
X=0的基础解系.
又因[1,0,1,0]
T
为AX=[α
1
,α
2
,α
3
,α
4
]X=0的解向量,故[α
1
,α
2
,α
3
,α
4
][1,0,1,0]
T
=α
1
+α
3
=0,即α
1
与α
3
线性相关,从而排除(C).仅(D)入选.
转载请注明原文地址:https://jikaoti.com/ti/ELLRFFFM
0
考研数学二
相关试题推荐
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
设f′(lnχ)=1+χ,且f(0)=1,求f(χ).
设f(χ)是以4为周期的可导函数,f(1)=,且,求y=f(χ)在(5,f(5))处的法线方程.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
yy〞=1+y′2满足初始条件y(0)=1,y′(0)=0的解为_______.
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
如图3—1,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
随机试题
关于滴虫性阴道炎,下列说法错误的是()
下列国家中安乐死合法化的是()
甲公司自1994年起其生产的衬衫上使用“娇月”商标;1996年,乙公司也开始使用“娇月”商标。乙公司1997年10月向工商行政管理局提出注册商标申请,1998年3月乙公司的“娇月”商标经国家商标局核准注册,其核定使用的商品为服装。1999年1月,乙公司发现
关于举证期限的确定,下列说法正确的是()。
国际代理实践中,在代理关系的成立及效力、当事人的权利义务、代理权的变更和终止等方面可能出现代理的法律冲突,则根据各国法律规定和司法实践,下列对代理法律适用表述正确的有哪些?()
根据《招标投标法实施条例》,投标保证金有效期截止日应当为()。
如图所示的平行板器件中,存在互相垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线,紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=0.25
文人士大夫的墨竹墨梅在明代后期形成独特体系。()
清代时期,乾隆皇帝组织编撰了中国历史上最大的一部丛书()。
在平面直角坐标系中,直线经过Q(-2,-3)和R(4,1.5)两点。(1)求这条直线的斜率。(2)求这条直线的纵截距。(3)求这条直线的横截距。(4)判断点(10,8)是否在这条直线上。(5)判断直线y=-(4/3)x+9是否与这条直线垂直。(
最新回复
(
0
)