首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
现有四个向量组 ①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T; ②(a,1,6,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T; ③(a,1,2,3)T,(6,1,2,3)T,(c,3,4,5)T,(d,0,
现有四个向量组 ①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T; ②(a,1,6,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T; ③(a,1,2,3)T,(6,1,2,3)T,(c,3,4,5)T,(d,0,
admin
2019-01-06
31
问题
现有四个向量组
①(1,2,3)
T
,(3,一1,5)
T
,(0,4,一2)
T
,(1,3,0)
T
;
②(a,1,6,0,0)
T
,(c,0,d,2,0)
T
,(e,0,f,0,3)
T
;
③(a,1,2,3)
T
,(6,1,2,3)
T
,(c,3,4,5)
T
,(d,0,0,0)
T
;
④(1,0,3,1)
T
,(一1,3,0,一2)
T
,(2,1,7,2)
T
,(4,2,14,5)
T
。
则下列结论正确的是( )
选项
A、线性相关的向量组为①④;线性无关的向量组为②③
B、线性相关的向量组为③④;线性无关的向量组为①②
C、线性相关的向量组为①②;线性无关的向量组为③④
D、线性相关的向量组为①③④;线性无关的向量组为②
答案
D
解析
向量组①是四个三维向量,从而线性相关,可排除B。由于(1,0,0)
T
,(0,2,0)
T
,(0,0,3)
T
线性无关,添上两个分量就可得向量组②,故向量组②线性无关。所以应排除C。向量组③中前两个向量之差与最后一个向量对应分量成比例,于是α
1
,α
2
,α
4
线性相关,那么添加α
3
后,向量组③必线性相关。应排除A。由排除法,所以应选D。
转载请注明原文地址:https://jikaoti.com/ti/BZBRFFFM
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且记Z=X+Y.求:(I)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
(95年)已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
(92年)设曲线y=e-χ(χ≥0)(1)把曲线y=e-χ,χ轴,y轴和直线χ=ξ(ξ>0)所围成平面图形绕χ轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足V(a)=V(ξ)的a.(2)在此曲线上找一点,使过该点的切线与两个坐标
(90年)设f(χ)有连续的导数,f(0)=0且f′(0)=b,若函数在χ=0处连续,则常数A=_______.
(07年)将函数f(χ)=展开成χ-1的幂级数,并指出其收敛区间.
(05年)已知齐次线性方程组同解,求a,b,c的值.
设f(χ),φ(χ)在点χ=0的某邻域内连续且χ→0时,f(χ)是φ(χ)的高阶无穷小,则χ→0时,∫0χf(t)sintdt是∫0χtφ(t)dt的()无穷小【】
求极限(用定积分求极限).
交换极坐标系下的二重积分I=∫—π/2π/2dθ∫0acosθf(r,θ)dr的次序,其中f(r,θ)为连续函数.
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次方程三个解,求此微分方程.
随机试题
(2021年聊城莘县)()是指在适当情况下,心理辅导教师公开有关自己的类似经验,与学生一起分享,以此帮助学生对自己的态度、情绪和行为后果有进一步的了解,并且从中得到积极的启示。
在驾驶员、接线员、银行出纳员等人群中,高血压的患病人数增加,此病属于
丙泊酚与硫喷妥钠的心血管作用不同点是
边界层分离不会:
记账凭证财务处理程序、汇总记账凭证账务处理程序和科目汇总表财务处理程序的相同点包括()。
精神上的贫困,往往比物质上的贫困更可怕。有些贫困地区和贫困村多年来扶而不起、帮而不富、助而不强,与缺乏穷则思变、穷则思勤的奋斗精神有一定关系。有些地方主动“返贫”,乐当贫困县,不愿摘穷帽子,有的贫困户发展农副产业不积极,争当低保户却很积极,从中都能发现“
“五条禁令”自( )起施行。原有规定与“五条禁令”不一致的,以“五条禁令”为准。
请观察下面这幅漫画,谈谈你对这个问题的认识。
Cache的中文译名是
Readthetextsinwhichfivepeopletalkedabouttheirviewsaboutsuccess.Forquestionsto65,matchthenameofeachperson(
最新回复
(
0
)