首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知当|χ|<1.时函数f(χ)满足f〞(χ)+a[f′(χ)]2=g(χ),且f′(0)=0,其中常数a>0,函数g(χ)在|χ|<1可导且g(0)=0,g′(0)>0.试问f(0)是不是函数的极值,点(0,f(0))是不是曲线y=f(χ)的拐点?
已知当|χ|<1.时函数f(χ)满足f〞(χ)+a[f′(χ)]2=g(χ),且f′(0)=0,其中常数a>0,函数g(χ)在|χ|<1可导且g(0)=0,g′(0)>0.试问f(0)是不是函数的极值,点(0,f(0))是不是曲线y=f(χ)的拐点?
admin
2018-06-12
45
问题
已知当|χ|<1.时函数f(χ)满足f〞(χ)+a[f′(χ)]
2
=g(χ),且f′(0)=0,其中常数a>0,函数g(χ)在|χ|<1可导且g(0)=0,g′(0)>0.试问f(0)是不是函数的极值,点(0,f(0))是不是曲线y=f(χ)的拐点?
选项
答案
由题设知f〞(χ)=g(χ)-a[f′(χ)]
2
当|χ|<1时成立,且f
(3)
(χ)在|χ|<1存在,在上式中令χ=0得f〞(0)=0,将上式求导得 f
(3)
=g′(χ)=2af′(χ)f〞(χ) 令χ=0得f
(3)
(0)=g′(0)>0,从而点(0,f(0))是曲线y=f(χ)的拐点. 又因f
(3)
(0)=[*]>0, 在0<|χ|<δ时[*]>0,即在(-δ,0)中f〞(χ)<0,在(0,δ)中f〞(χ)>0.利用f′(0)=0即知f′(χ)在(-δ,0)与(0,δ)中都取正值,故f(0)不是函数f(χ)的极值.
解析
转载请注明原文地址:https://jikaoti.com/ti/6N2RFFFM
0
考研数学一
相关试题推荐
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
已知A=,A*是A的伴随矩阵,那么A*的特征值是______.
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中(1)A2(2)P-1AP(3)AT(4)E-Aα肯定是其特征向量的矩阵共有()
设α1=(1,2,3,1)T,α2=(3,4,7,-1)T,α3=(2,6,a,6)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
计算不定积分
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角的平面截此柱体,得一楔形体(如图1.3-2),求此楔形体的体积V.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:(Ⅰ)(Ⅱ)(et-1-t)2dt.
随机试题
在《中国植被》一书中,中国植物分类的高级单位是()
患者,女性,33岁,因发热,咽喉痛口服某种中成药,3.次/日,每次3片,服药3天后,体温未降反而上升至39℃,伴有厌食、上腹部不适。前往医院就诊,实验室检查报告示:谷丙转氨酶371U/L,谷草转氨酶275U/L。该患者服用的中成药可能为()。
A、行政复议B、行政强制C、行政许可D、行政诉讼某公民认为药品监督管理部门不依法履行土地房屋征收补偿协议,可以向人民法院提出
根据《劳动法》,劳动者患病,医疗期满后,不能从事原工作也不能从事由用人单位另行安排的工作的,用人单位可以解除劳动合同,但是应当提前( )以书面形式通知劳动者本人。
(2016年)下列有关项目合伙人复核的说法中,错误的是()。
一般把经济周期分为四个阶段,这四个阶段为()。
2006年5月20日长江三峡大坝全线建成,全长()米。
在面向对象软件开发过程中,采用设计模式()。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”作答。二、给定资料
Despitethemountainsofinformationwarningusofthedangerofsmoking,teenagersmokingisontherise.Inthissection,you
最新回复
(
0
)