首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立 f(tx,ty)=t2f(x,y). (1)证明 (2)设D是由L:x2+y2=4正向一周所围成的闭区域,证明: ∮Lf(x,y)ds=div[grad f(x,y)]
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立 f(tx,ty)=t2f(x,y). (1)证明 (2)设D是由L:x2+y2=4正向一周所围成的闭区域,证明: ∮Lf(x,y)ds=div[grad f(x,y)]
admin
2018-09-25
34
问题
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立
f(tx,ty)=t
2
f(x,y).
(1)证明
(2)设D是由L:x
2
+y
2
=4正向一周所围成的闭区域,证明:
∮
L
f(x,y)ds=
div[grad f(x,y)]dσ.
选项
答案
(1)方程f(tx,ty)=t
2
f(x,y)两边对t求导得 xf
1
’(tx,ty)+yf
2
’(tx,ty)=2tf(x.y). 再对t求导得, x[xf
21
]](tx,ty)+yf
12
’’(tx,ty)]+y[xf
21
’’(tx,ty)+yf
22
’’(tx,ty)]=2f(x,y). 于是 tx[txf
11
’’(tx,ty)+ty
12
’’(tx,ty)]+ty[txf
21
’’(tx,ty)+tyf
22
’’(tx,ty)]=2t
2
f(x,y)=2f(tx,ty), 由此得x
2
f
xx
’’(x,y)+2xyf
xy
’’(x,y)+y
2
f
yy
’’(x,y)=2f(x,y),即结论成立. (2)由xf
1
’(tx,ty)+yf
2
’(tx,ty)=2tf(x,y)得 txf
1
’(tx,ty)+tyf
2
’(tx,ty)=2t
2
f(x,y), 即xf
x
’(x,y)+yf
y
’(x,y)=2f(x,y),又 [*] (其中n
0
为点(x,y)处的单位切向量).
解析
转载请注明原文地址:https://jikaoti.com/ti/z42RFFFM
0
考研数学一
相关试题推荐
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令Y=X2,求Y的密度函数.
设z=f(u,v),u=φ(x,y),v=ψ(x,y)具有二阶连续偏导数,求复合函数z=f[φ(x,y),ψ(x,y)]的一阶与二阶偏导数.
设A是n阶正定矩阵,α1,α2,…,αm是n维非零列向量,且Aαj=0(i≠j),证明α1,α2,…,αm线性无关.
设D为平面区域:x2+y2≤4,则dxdy=__________;
已知A,B及A,C都可交换,证明A,B,C是同阶矩阵,且A与BC可交换.
要造一个圆柱形无盖水池,使其容积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
运用导数的知识作函数y=x+的图形.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(Ⅰ)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
∫01xarcsinxdx=_______.
随机试题
论述1931一1941年英美远东政策的变化及对中国的影响。(2014年统考真题)
根据布卢姆等的教育目标分类研究,“偏爱某种价值观念”应属于
万达外资公司无进出口经营权,2007年5月从意大利进口一批玩具样品,在向海关申报时,其报关单“贸易方式”栏应填写()。
金融工程是一门将金融学、统计学、工程技术、计算机技术相结合的交叉性学科。()
银行根据申请人的要求,向受益人承诺债务人不履行债务或符合约定的条件时,银行按照约定以支付一定货币的方式履行债务或者承担责任的行为是()。
下列关于协方差和相关系数的说法中,正确的有()。
为搞好同领队的关系,导游员应()。
甲向乙借款3万元,到期未归还,乙向甲请求还款的诉讼时效期间为()。
[*]
设有抛物线绕z轴旋转得到旋转抛物面,其位于第一卦限部分上的动点P处的切平面与三坐标面围成四面体.设W=lnV,且x=x(y,z)由方程x+x2+y2=2所确定,求
最新回复
(
0
)