首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1 (2)aij=-AijATA=E且|A|=-1.
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1 (2)aij=-AijATA=E且|A|=-1.
admin
2018-09-20
66
问题
设A为n(n≥3)阶非零实矩阵,A
ij
为|A|中元素a
ij
的代数余子式,证明下列结论:
(1)a
ij
=A
ij
A
T
A=E且|A|=1
(2)a
ij
=-A
ij
A
T
A=E且|A|=-1.
选项
答案
(1)当a
ij
=A
ij
时,有A
T
=A*,则A
T
A=AA*=|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以tr(AA
T
)=[*].而tr(AA
T
)=tr(|A|E)=n|A|,这说明|A|>0.在AA
T
=|A|E两边取行列式,得|A|
n-2
=1,|A|=1. 反之,若A
T
A=E且|A|=1,则A*A=|A|E=E且A可逆,于是A
T
A=A*A,A
T
=A*,即a
ij
=A
ij
. (2)当a
ij
=一A
ij
时,有A
T
=-A*,则A
T
A=一A*A=一|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,不妨假设其第j列存在非零元素,所以|A|=[*]在A
T
A=一|A|E 两边取行列式得|A|=一1. 反之,若A
T
A=E且|A|=一1,由于A*A=|A|E=一E,于是A
T
A=-A*A.进一步,由于A可逆,得A
T
=-A*,即a
ij
=-A
ij
.
解析
转载请注明原文地址:https://jikaoti.com/ti/xfIRFFFM
0
考研数学三
相关试题推荐
证明:aretanx=(x∈(-∞,+∞)).
求曲线的渐近线.
求函数y=的单调区间,极值点及其图形的凹凸区间与拐点.
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设3阶矩阵A的特征值λ=1,λ=2,λ=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T.(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表出:(Ⅱ)求Anβ.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
证明:(Ⅰ)对任意正整数n,都有成立;(Ⅱ)设an=1+—lnn(n=1,2,…),证明{an}收敛。
随机试题
A.胃肠道反应B.乳酸酸中毒C.低血糖反应D.水肿二甲双胍最常见的不良反应是
患者,男性,41岁,左面部血管瘤,2009年4月给予颈部扩张器植入术,术后皮肤扩张12周,7月入院给予行颈部带蒂皮瓣移植术。术后给予蒂部血供的测定训练,首次时间为多少
检测细菌浓度用可见光分光光度计,测细菌波长光为
房屋层数是指房屋的自然层数,一般按室内地坪()以上计算。
注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。请考生仔细阅读给定资料.按要求作答。2.本试题由“给定资料”和“作答要求"两部分构成。考试时限为150分钟。其中。阅读给定资料参考时限为40
下列说法中,主要包含了光的反射原理的是()。
关于完备性的说法错误的是()。
设c1和c2是类MyClass的对象,若将运算符"+"和"*"作为类MyClass的成员函数重载,则表达式c1+c2*c1等价于
Remember:A=ArticleAB=ArticleBC=ArticleCD=ArticleDWhicharticle(s)…revealsthegenderdifferenceinsui
WhathashappenedtotheAmericanfamily--thefrayingeffectofharassedworkingparents,thestrangleholdofthemedia,thepre
最新回复
(
0
)