首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装( )箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装( )箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)
admin
2019-03-25
30
问题
一生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均重50千克,标准差为5。若用最大载重为5吨的汽车承运,利用中心极限定理说明每辆车最多可以装( )箱,才能保证不超载的概率大于0.977(Φ(2)=0.977,其中Φ(x)是标准正态分布函数)。
选项
A、96。
B、98。
C、99。
D、100。
答案
B
解析
设X
i
(i=1,2,…,n)是装运的第i箱的质量(单位:千克),假设每辆车最多可装n箱。由条件把X
1
,X
2
,…,X
n
视为独立同分布随机变量,则n箱的总质量为
T
n
=X
1
+X
2
+…+X
n
,
由条件知
E(X
i
)=50,
=5;E(T
n
)=50n,
=5√n,
根据列维一林德伯格定理,T
n
近似服从正态分布N(50n,25n),箱数n决定于条件
P{T
n
≤5 000}=
>0.977=Φ(2),
由此可见
>2,从而n<98.019 9,即最多可以装98箱。故选(B)。
转载请注明原文地址:https://jikaoti.com/ti/xIoRFFFM
0
考研数学一
相关试题推荐
(2017年)设薄片型S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为C。(I)求C在xOy面上的投影曲线的方程;(Ⅱ)求S的质量m。
(2006年)设f(x,y)为连续函数,则等于()
(2014年)设函数y=f(x)由方程y3+xy2+x2y+6=0确定,求f(x)的极值。
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f
(2002年)设函数y=f(x)在(0,+∞)内有界且可导,则()
(2004年)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来。现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的总阻力与飞机的速度
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1。
设二维随机变量(X,Y)的概率密度为f(x,y)=,—∞<x<+∞,—∞<y<+∞,求常数A及条件概率密度fY|X(Y|x)。
设总体X的概率密度为其中θ∈(0,+∞)为未知参数X1,X2,…,Xn为来自总体X的简单随机样本,T=max{X1,X2,…,Xn}。(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得aT为θ的无偏估计。
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40(cm),则μ的置信度为0.95的置信区间是________。(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95。)
随机试题
全蛋糊的原料配比是:________。
主湿证的脉象有
以下哪项不属于肺间质的组成
涉外民商事案件的审理,程序法的适用十分重要。我国法律对涉外民事案件诉讼程序作出了许多规定。下列选项中哪些选项属于我国法律所作出的规定?()
下列关于防洪标准的叙述中,错误的是:[2008-6]
生活垃圾填埋场应设在当地()季主导方向的下风处。
下列各项中,可计人资产的是()。
有人说:各种商品的价值之所以能相互比较,是因为货币执行价值尺度的职能。这一观点对吗?
例如:男:喂,请问张经理在吗?女:他正在开会,您半个小时以后再打,好吗?B
A、Shewillonlylendmoneytoclosefriends.B、Shewilllendmoneytofriendsinemergency.C、Sheisreluctanttolendmoneyto
最新回复
(
0
)