首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,则下列向量组中线性无关向量组是( )。
设向量组α1,α2,α3线性无关,则下列向量组中线性无关向量组是( )。
admin
2015-11-16
34
问题
设向量组α
1
,α
2
,α
3
线性无关,则下列向量组中线性无关向量组是( )。
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
-α
1
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
C、α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
D、α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
答案
C
解析
[解题思路] 用线性无关向量组线性表示的向量组的线性相关性的判定常用下述矩阵表示法:
设向量组(Ⅱ):β
1
,…,β
r
能由线性无关向量组(Ⅰ):α
1
,…,α
s
线性表示为
或 [β
1
,…,β
r
]=[α
1
,…,α
s
][g
ij
]
s×r
=[α
1
,…,α
s
]G,
则向量组(Ⅱ)线性无关的充要条件是秩(K)=r(或秩(G)=r)。当r=s时,归结为计算行列式|K|或|G|。如它们不等于0,则向量组(Ⅱ)线性无关;如等于零,向量组(Ⅱ)线性相关。
(参阅《考研数学一常考题型解题方法技巧归纳(第二版)》P310)
解一 对于(A),令β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,β
3
=α
3
-β
1
,则
[α
1
+α
2
,α
2
+α
3
,β
3
=α
3
-β
1
]=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
1
,
而
故向量组α
1
+α
2
,α
2
+α
3
,α
3
-α
1
线性相关。
对于(B),令β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,β
3
=α
1
+2α
2
+α
3
,则
[α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
]=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
2
,
而
故向量组α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
线性相关。
对于(C),令β
1
=α
1
+2α
2
,β
2
=2α
2
+3α
3
,β
3
=3α
3
+α
1
,则
[α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
]=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
3
,
而
故向量组α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
线性相关。
对于(D),令β
1
=α
1
+α
2
+α
3
,β
2
=2α
1
-3α
2
+22α
3
,β
3
=3α
1
+5α
2
-5α
3
,则
[α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
]
=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
4
,
而|G
4
|=
=0,故(D)中向量组线性相关,仅(C)入选。
解二 也可用定义判别,对于选项(C),令
k
1
(α
1
+2α
2
)+k
2
(2α
2
+3α
3
)+k
3
(3α
3
+α
1
)=0,
即 (k
1
+k
3
)α
1
+(2k
1
+2k
2
)α
2
+(3k
2
+3k
3
)α
3
=0。
因α
1
,α
2
,α
3
线性无关,故
因该方程组的系数矩阵行列式不等于0,故该方程组只有零解,即k
1
=k
2
=k
3
=0,所以该向量组线性无关,仅(C)入选。
转载请注明原文地址:https://jikaoti.com/ti/vxPRFFFM
0
考研数学一
相关试题推荐
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设有3阶实对称矩阵A满足A3-6A2+11A-6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
设当x→0时,ln(1+x)一(ax2+bx)是比xarcsinx高阶的无穷小量,试求常数a和b.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D,若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32,求A-1的特征值并判断A-1是否可对角化。
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
随机试题
某单位四个党史宣讲小组各有若干组员,现增加2人并重新分配,使得四个小组人数相等。此时与原先相比,第一小组人数增加10人,第二小组人数减少1人,第三小组人数增加一倍,第四小组人数减半。则原先人数最多的小组与人数最少的小组之间相差:
具有清热利湿,利胆退黄之效,治湿热黄疸的药对是()
患者,男,50岁。症见头晕、头痛、耳鸣、舌质黯红、脉沉涩,中医辨证为血瘀所致的眩晕,处以逐瘀通脉胶囊,其药物组成为水蛭、虻虫、桃仁、大黄。处方中水蛭的主要有效药用成分为
上海某外国语大学某女生到上海某外资百货公司超市购买东西,出了收款口后,被商场保安拦住,说她身上有未交款的商品。该女生声明自己没有,仍被商场保安带至地下室强行搜身。后来,该女生以商场侵害其人格权为由向法院提起诉讼,一审法院判决该外资百货公司赔偿该女生精神损失
“生产成本”账户的借方余额表示()。
纳税人在停业期间发生纳税义务的,应当按照税收法律、行政法规的规定申报缴纳税款。()
决定项目的质量和成功时,与人员有关的过程主要包括________。
一般资料:求助者,女性,61岁,本科学历,退休公务员。案例介绍:求助者是公务员,因年龄原因正常退休。退休后经常去旅游,参加各类聚会,做些自己感兴趣的事。最近几年不断有老同学去世,每听到这种消息就很难过。几个月前自己最要好的一位朋友因病去世了,求助者非常痛
某中队一次中队活动的主题是“做个遵守纪律的好队员”。活动伊始,辅导员机械地逐条朗读学校的规章制度,最后请队员集体签名。期间,队员昏昏沉沉地听理论。这位中队辅导员主要违背了辅导少先队开展活动的()。
近年来因程序违法败诉的行政诉讼案件不少,尽管有前车之鉴。但是依然不乏职能部门__________。说到底,还是“重结果,轻程序”。不把程序当回事。行政行为自然经不起推敲。程序是保证我们有效实现结果的合理设计,程序正当得不到___________,必然给我们
最新回复
(
0
)