首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2021-11-09
28
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解. 令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-1
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
…,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
ξ
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
,线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://jikaoti.com/ti/31lRFFFM
0
考研数学二
相关试题推荐
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.
求微分方程y〞+y′-2y=(2χ+1)eχ-2的通解.
设曲线L:r=e2θ,则曲线L的弧微分为_______.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,6)使
设A,B为同阶矩阵.如果A,B相似,试证A,B的特征多项式相等;
设x=tant,则[*]又∫etsintdt=-∫etd(cost)=-(etcost-∫etcostdt)=-etcost+etsint-∫etSintdt,故∫etsintdt=1/2(-etcost+etsint)。[*]
设求y’.
随机试题
二尖瓣开瓣音在下列哪种情况下存在
易导致肺气肿或肺心病的是
四氟乙烷在气雾剂中的作用是()。
根据《建设工程造价鉴定规范》(GB/T51262-2017),关于鉴定期限的起算,下列说法正确的是()。
环境保护监理机构和施工单位应根据监测计划和工程进度及时进行施工环境监测,对废气、废水、噪声等作业场所的现场监理和监测()。
下列选项中一定是单位负责人的是( )。
根据企业破产法律制度的规定,下列情形中,债权人可以行使抵销权的是()。(2009年)
张先生为回国留学人员,2009年7月购买我国生产的轿车自用,支付不含税价款20万元、支付保险费800元,支付购买工具和备件价款2500元、车辆装饰费500元。2011年7月张先生将该轿车转让给黄先生,成交价11万元,该型号轿车最新核定的同类型车辆最低计税价
下列属于间接收集资料的方法有()。
IfIhadtakenthedoctor’sadviceandrestedforafewdays,Ishouldhavecompletelyrecoveredbynow.
最新回复
(
0
)