首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足 ∫0f(x)f-1(t)dt=∫0xtdt 其中f-1是f的反函数,求f(x).
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足 ∫0f(x)f-1(t)dt=∫0xtdt 其中f-1是f的反函数,求f(x).
admin
2019-05-10
62
问题
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足
∫
0
f(x)
f
-1
(t)dt=∫
0
x
t
dt
其中f
-1
是f的反函数,求f(x).
选项
答案
在所给方程两边对x求导,利用f[f
-1
(x)]=x,得到关于.f′的方程,求解此微分方程即可求出f(x). 在所给等式两边对x求导,得到 f
-1
[f(x)]f′(x)=x[*], 即 xf′(x)=x[*]两边积分得到 f(x)=[*]=ln∣sinx+cosx∣+C, ① 其中x∈[0,π/4].在原式中令x=0,得到∫
0
f(0)
f
-1
(t)dt=∫
0
0
t[*]dt=0.因f(x)在区间[0,π/4]上单调、可导,则f
-1
(x)的值域为[0,π/4],单调非负,故f(0)=0,代入式①可得C=0,故f(x)=ln∣cosx+sinx∣—ln(cosx+sinx).
解析
转载请注明原文地址:https://jikaoti.com/ti/vELRFFFM
0
考研数学二
相关试题推荐
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
将积f(χ,y)dχdy化成极坐标形式,其中D为χ2+y2=-8χ所围成的区域.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,且其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点的切线重合,求函数y=y(χ).
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2。求f(x,y)在椭圆域上的最大值和最小值。
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
I’msorryIcan’tseeyouimmediately;butifyou’dliketotakeaseat,I’llbewithyou______.
A.泻下、导滞B.泻下、逐水、消肿C.泻下、利水、杀虫D.泻下、逐水、杀虫E.泻下、清肝、杀虫
依据《城市房地产管理法>,县级以上地方人民政府出让土地使用权用于房地产开发的,按照国务院规定,其年度出让土地使用权总面积方案应:
任何一个国家,如果没有资本积累就谈不上经济的发展,同样,没有资本的有效配置,要实现令人满意的经济发展也是不可能的。资本市场的功能主要体现在()三个方面。
作为上海“乖乖女”的小舟,目前正面临职业生涯与家庭上的转变,需要金融理财师协助规划。经过初步沟通面谈后,理财师获得了以下家庭、职业与财务信息:一、案例成员四、理财目标1.融资买房,计划购买90万元的房子;2.收入重新分配,增加一些必要的支出;3
下图表示机体生命活动调节的途径,下列说法错误的是()。
唐朝是我国文化大繁荣的一个时期,下列哪一个称号描述的不是唐朝诗人?()
假设双寡头面临一条线性需求曲线:P=30-Q,其中,Q为两厂商的总产量,即Q=Q1+Q2。假设两厂商的边际成本都为零。下列结论中,正确的是()。
公安机关是刑事诉讼中的()机关。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。打开考生文件夹下的演示文稿yswg.pptx,根据考生文件夹下的文件“ppT一素材.docx”,按照下列要求完善此文稿并
最新回复
(
0
)