首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续且严格单调增加,证明: (a+b)∫abf(x)dx<2∫abxf(x)dx.
设f(x)在[a,b]上连续且严格单调增加,证明: (a+b)∫abf(x)dx<2∫abxf(x)dx.
admin
2018-09-25
18
问题
设f(x)在[a,b]上连续且严格单调增加,证明: (a+b)∫
a
b
f(x)dx<2∫
a
b
xf(x)dx.
选项
答案
令F(t)=(a+t)∫
a
t
f(x)dx-2∫
a
t
xf(x)dx,则 F’(t)=∫
a
t
f(x)dx+(a+t)f(t)-2tf(t) =∫
a
t
f(x)dx-(t-a)f(t)=∫
a
t
f(x)dx-∫
a
t
f(t)dx =∫
a
t
[f(x)-f(t)]dx. 因为a≤x≤t,且f(x)在[a,b]上严格单调增加,所以f(x)-f(t)≤0,于是有 F’(t)=∫
a
t
[f(x)-f(t)]dx≤0, 即F(t)单调减少,又F(a)=0,所以F(b)<0,从而(a+b)∫
a
b
f(x)dx-2∫
a
b
xf(x)dx<0, 即(a+b)∫
a
b
f(x)dx<2∫
a
b
xf(x)dx.
解析
转载请注明原文地址:https://jikaoti.com/ti/up2RFFFM
0
考研数学一
相关试题推荐
计算行列式Dn=之值.
设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f′(ξ)>0.
求下列曲面的面积:(Ⅰ)半球面z=及旋转抛物面2az=x2+y2所围立体的表面S;(Ⅱ)锥面z=被柱面z2=2x所割下部分的曲面S.
求下列曲面积分:(Ⅰ)I=ydS,其中∑是平面x+y+z=1被圆柱面x2+y2=1截出的有限部分;(Ⅱ)I=zdS,其中∑是锥面z=在柱体x2+y2≤2x内的部分.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
计算下列二重积分:(Ⅰ)xydσ,其中D是由曲线r=sin2θ(0≤θ≤)围成的区域;(Ⅱ)xydσ,其中D是由曲线y=,x2+(y-1)2=1与y轴围成的在右上方的部分.
计算曲面积分xz2dydz+x2ydzdx+y2zdxdy,其中S是球面x2+y2+z2=a2的上半部分与平面z=0所围成的闭曲面外侧.
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
随机试题
没有诉讼行为能力的公民,由其法定代理人代为诉讼。法定代理人互相推诿代理责任的,由()代为诉讼。
不属于APP的物质是
肝脏进行生物转化时活性硫酸的供体是
心室肌细胞动作电位平台期,主要是由哪些离子跨膜运动形成的
男性,56岁,左侧胸痛,咳痰带血,低热,消瘦2个月。检查左侧有胸腔积液,穿刺抽出血性渗出液,胸腔积液增长很快,最可能的诊断是
核右移的判断标准为五分叶核细胞大于
酚妥拉明过量导致血压下降很多时,为使得血压升高,可以用
下列收入中不缴纳营业税的有( )。
表达权利是指公民依法享有的表达自己对国家公共生活的看法、观点、意见的权利。典型的表达方式有言论、出版、集会、结社、游行和示威。表达权利的前提是()
Havingmadehisfirstfilmearlierthisyear,heis______startinginanewmusical.
最新回复
(
0
)