首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(Ⅰ)和(Ⅱ)的公共解.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(Ⅰ)和(Ⅱ)的公共解.
admin
2018-11-11
43
问题
已知线性方程组(I)
及线性方程组(Ⅱ)的基础解系
ξ
1
=[一3,7,2,0]
T
,ξ
2
=[一1,一2,0,1]
T
.
求方程组(Ⅰ)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为 k
1
ξ
1
+k
2
ξ
2
=k
1
[一3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
=[一3k
1
一k
2
,7k
1
-2k
2
,2k
1
,k
2
]
T
. 其中k
1
,k
2
是任意常数,将该通解代入方程组(I)得: 3(3k
1
-k
2
)一(7k
1
—2k
2
)+8(2k
1
)+k
2
=一16k
1
+16k
1
—3k
2
+3k
2
=0, (一3k
1
-k
2
)+3(7k
1
-2k
2
)一9(2k
1
)+7k
2
=一21k
1
+21k
1
—7k
2
+7k
2
=0, 即方程组(Ⅱ)的通解均满足方程组(Ⅰ),故(Ⅱ)的通解 k
1
[一3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
. 即是方程组(I),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://jikaoti.com/ti/uBWRFFFM
0
考研数学二
相关试题推荐
设x>0时,可微函数f(x)及其反函数g(x)满足关系式∫0f(x)g(t)dt=则f(x)=_______.
设当实数a为何值时,方程组Ax=β有无穷多组解,并求其通解.
设矩阵已知线性方程组Ax=β有解但不唯一,试求a值;
已知下列非齐次线性方程组(I),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
设线性方程组与方程x1+2x2+x3=a—1(Ⅱ)有公共解,求a的值及所有公共解.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.证明4E一A可逆;
设f(x)在(一∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=在(一∞,0)和(0,+∞)都是单调增加的.
设函数fi(x)(i=1,2)具有二阶连续导数,且fi(x0)
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
随机试题
A.国务院食品药品监督管理部门B.省级食品药品监督管理部门C.省级工商行政管理部门D.市级药品监督管理部门《规定》明确了负责基本药物的评价性抽验,加大年度药品抽验计划中基本药物的抽验比例,组织开展基本药物品种的再评价工作的部门是()。
用来平稳由于水电站负荷变化在引水或尾水建筑物中造成流量及压力变化的建筑物是()。
让人高兴的语言往往柔和甜美,所以称之为()
高远、平远、深远是中国古代山水画的三种透视法,它出自古代画论()。
从世界经济的发展历程来看,如果一国或地区的经济保持着稳定的增长速度,大多数商品和服务的价格必然随之上涨,只要这种涨幅始终在一个较小的区间内就不会对经济造成负面影响。由此可以推出,在一定时期内()。
设y=f(x)与y=sin2x在(0,0)处切线相同,其中f(x)可导,则
编写如下程序:PrivateSubCommand1_Click()DimnAsLong,sAsStringn=InputBox("输入一个数")DoWhilen<>0s=s&nMod10:s=s&n\10Mod1
文小雨加入了学校的旅游社团组织,正在参与组织暑期到台湾日月潭的夏令营活动,现在需要制作一份关于日月潭的演示文稿。根据以下要求,并参考“参考图片.docx”文件中的样例效果,完成演示文稿的制作。参考样例文件效果,调整第5和6张幻灯片标题下文本的段落间距,
WhatkindofweatherisnormalforMarch?
A、Heheardsomeonebreaktheglass.B、Hedidn’tknowthejuicewasinthekitchen.C、Hemetacaraccidentthismorning.D、Heca
最新回复
(
0
)